INCORPORATION OF CDS NANOPARTICLES INTO PMMA MATRIX AND THEIR PHOTOCATALYTIC RESPONSE AGAINST METHYLENE BLUE

Main Article Content

Huma Tareen
Farrukh Bashir
Irum Javid
Naheed Sajjad
Zile Huma
Muhammad Riaz
Khurrum Shazad Buzdar
Muhammad Aamir Raza
Uzma Jabeen

Keywords

Poly methyl methacrylate, Photocatalysis, Methylene blue, Band gap energy

Abstract

Thin films of cadmium sulphide/poly methyl methacrylate (CdS/PMMA) were synthesized by the using solution casting method. This method was used due to the hydrophilic and hydrophobic compatibility of metal sulphide with PMMA matrix. The fabricated films were characterized by using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) and Ultraviolet-visible (UV-Vis) spectroscopy. The photocatalytic activity of these films was carried out by using methylene blue solution as a water pollutant. Results revealed that as the content of CdS was increased in the polymer matrix, the band gap values became more narrow (2.3 eV for sample F). Furthermore, the thin film of 0.8 g CdS/PMMA exhibited the highest and fastest rate of photocatalytic degradation ( 99 % in 240 minutes) among all the composites. These results are attributed to the narrow band gap, higher adsorption capacity and good electron acceptability of CdS. Hence, toxic waste products produced by different industries could be removed by using CdS/PMMA photocatalysts.

Abstract 189 | Pdf Downloads 19

References

1. Ghahestani, S.M.; Shahab, E.; Karimi, S.; Madani, M.H. Methylene blue may have a role in the treatment of COVID-19. Medical Hypotheses 2020, 144, 110163, doi:https://doi.org/10.1016/j.mehy.2020.110163.
2. Bužga, M.; Machytka, E.; Dvořáčková, E.; Švagera, Z.; Stejskal, D.; Máca, J.; Král, J. Methylene blue: a controversial diagnostic acid and medication? Toxicology Research 2022, 11, 711-717, doi:10.1093/toxres/tfac050.
3. Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental 2001, 31, 145-157.
4. Singh, J.; Chang, Y.-Y.; Koduru, J.R.; Yang, J.-K. Potential degradation of methylene blue (MB) by nano-metallic particles: A kinetic study and possible mechanism of MB degradation. Environmental Engineering Research 2018, 23, 1-9.
5. Liu, T.; Yang, G.; Wang, W.; Wang, C.; Wang, M.; Sun, X.; Xu, P.; Zhang, J. Preparation of C3N5 nanosheets with enhanced performance in photocatalytic methylene blue (MB) degradation and H2-evolution from water splitting. Environmental Research 2020, 188, 109741.
6. Upendar, G.; Dutta, S.; Bhattacharya, P.; Dutta, A. Bioremediation of methylene blue dye using Bacillus subtilis MTCC 441. Water Science and Technology 2017, 75, 1572-1583.
7. Bharti, V.; Vikrant, K.; Goswami, M.; Tiwari, H.; Sonwani, R.K.; Lee, J.; Tsang, D.C.; Kim, K.-H.; Saeed, M.; Kumar, S. Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environmental research 2019, 171, 356-364.
8. Ahmad, A.; Singh, A.P.; Khan, N.; Chowdhary, P.; Giri, B.S.; Varjani, S.; Chaturvedi, P. Bio-composite of Fe-sludge biochar immobilized with Bacillus Sp. in packed column for bio-adsorption of Methylene blue in a hybrid treatment system: Isotherm and kinetic evaluation. Environmental Technology & Innovation 2021, 23, 101734.
9. Sheng, C.K.; Amin, K.A.M.; Hong, L.L.; Hassan, M.F.; Ismail, M. Investigation of morphological, structural and electrical properties of Cds/PMMA nanocomposite film prepared by solution casting method. Int. J. Electrochem. Sci 2017, 12, 10023-10031.
10. Bangi, U. Impact of cadmium salt concentration on CdS nanoparticles synthesized by chemical precipitation method. Chalcogenide Letters 2020, 17, 537-547.
11. Pandian, S.R.K.; Deepak, V.; Kalishwaralal, K.; Gurunathan, S. Biologically synthesized fluorescent CdS NPs encapsulated by PHB. Enzyme and microbial technology 2011, 48, 319-325.
12. Brown, J.W.; Ramesh, P.; Geetha, D. Photodegradation of Methylene Blue Dye Using Nanocomposites of Copper Sulfide Doped with Fe/Cd/Zr as Nanophotocatalyst. Indian Journal of Science and Technology 2019, 12, 45.
13. Osuntokun, J.; Ajibade, P.A. Structural and thermal studies of ZnS and CdS nanoparticles in polymer matrices. Journal of Nanomaterials 2016, 2016.
14. Kumar, S.; Sharma, J. Stable phase CdS nanoparticles for optoelectronics: a study on surface morphology, structural and optical characterization. Materials Science-Poland 2016, 34, 368-373.
15. Mahanthappa, M.; Kottam, N.; Yellappa, S. Enhanced photocatalytic degradation of methylene blue dye using CuSCdS nanocomposite under visible light irradiation. Applied Surface Science 2019, 475, 828-838.
16. Jang, J.; Kim, S.; Lee, K.J. Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization. Chemical communications 2007, 2689-2691.
17. Zhong, W.; Tu, W.; Wang, Z.; Lin, Z.; Xu, A.; Ye, X.; Chen, D.; Xiao, B. Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution. Journal of Energy Chemistry 2020, 51, 280-284.
18. Hussien, M.S.; Mohammed, M.I.; Yahia, I.S. Flexible photocatalytic membrane based on CdS/PMMA polymeric nanocomposite films: multifunctional materials. Environmental Science and Pollution Research 2020, 27, 45225-45237.
19. Padmaja, S.; Jayakumar, S. Tunable luminescence and transmittance nature of CdS: PMMA nanocomposites for optoelectronic applications. Optics & Laser Technology 2019, 112, 409-412.
20. Pedone, L.; Caponetti, E.; Leone, M.; Militello, V.; Pantò, V.; Polizzi, S.; Saladino, M.L. Synthesis and characterization of CdS nanoparticles embedded in a polymethylmethacrylate matrix. Journal of colloid and interface science 2005, 284, 495-500.
21. Hussain, T.; Bashir, F.; Mujahid, A.; Intisar, A.; Ahmad, M.N.; Raza, M.A.; Din, M.I.; Jabeen, U.; Mushtaq, A.; Tareen, H. Highly Stable APTES Incorporated CNTs Based Ternary Polymer Composites with Improved Dielectric and Thermal Properties. Silicon 2022, 1-10.
22. Bashir, F.; Hussain, T.; Mujahid, A.; Shehzad, K.; Raza, M.A.; Zahid, M.; Athar, M.M. Tailoring electrical and thermal properties of polymethyl methacrylate‐carbon nanotubes composites through polyaniline and dodecyl benzene sulphonic acid impregnation. Polymer Composites 2018, 39, E1052-E1059.
23. Soltani, N.; Saion, E.; Yunus, W.M.M.; Navasery, M.; Bahmanrokh, G.; Erfani, M.; Zare, M.R.; Gharibshahi, E. Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles. Solar Energy 2013, 97, 147-154.
24. Bashir, F.; Hussain, T.; Mujahid, A.; Mushtaq, A.; Raza, M.A.; Ahmad, M.N.; Zahid, M.; Din, M.I.; Tareen, H. Zwitterionic surfactant modified carbon nanotubes incorporated percolative polymer composites with improved features. Nano Biomedicine & Engineering 2023, 15.
25. Hussain, T.; Bashir, F.; Mujahid, A.; Intisar, A.; Ahmad, M.N.; Raza, M.A.; Din, M.I.; Jabeen, U.; Mushtaq, A.; Tareen, H. Highly Stable APTES Incorporated CNTs Based Ternary Polymer Composites with Improved Dielectric and Thermal Properties. Silicon 2022, 14, 10807-10816.
26. Hussain, T.; Ahmad, M.N.; Nawaz, A.; Mujahid, A.; Bashir, F.; Mustafa, G. Surfactant incorporated Co nanoparticles polymer composites with uniform dispersion and double percolation. Journal of Chemistry 2017, 2017.
27. Mbese, J.Z.; Ajibade, P.A. Preparation and Characterization of ZnS, CdS and HgS/Poly(methyl methacrylate) Nanocomposites. Polymers 2014, 6, 2332-2344.
28. Bashir, F.; Hakeem, P.; Mushtaq, A.; Tareen, H.; Aamir, M.; Buzdar, K.S. Role of Metallic and Bimetallic Modified Carbon Nanotubes in the Formation of Polymethyl Methacrylate Composites: Zn-CNTs and Cu-Zn/CNTs based PMMA composites. Pakistan Journal of Multidisciplinary Research 2023, 4, 32-45.
29. Al-Bataineh, Q.M.; Ahmad, A.A.; Alsaad, A.; Telfah, A.D. Optical characterizations of PMMA/metal oxide nanoparticles thin films: bandgap engineering using a novel derived model. Heliyon 2021, 7.
30. Mohammed, M.; Khafagy, R.; Hussien, M.S.; Sakr, G.; Ibrahim, M.A.; Yahia, I.; Zahran, H. Enhancing the structural, optical, electrical, properties and photocatalytic applications of ZnO/PMMA nanocomposite membranes: Towards multifunctional membranes. Journal of Materials Science: Materials in Electronics 2021, 1-26.
31. Trabelsi, A.B.G.; Mostafa, A.M.; Alkallas, F.H.; Elsharkawy, W.; Al-Ahmadi, A.N.; Ahmed, H.A.; Nafee, S.S.; Pashameah, R.A.; Mwafy, E.A. Effect of CuO nanoparticles on the optical, structural, and electrical properties in the PMMA/PVDF nanocomposite. Micromachines 2023, 14, 1195.
32. Morales, G.; Astrid Yáñez-Hernández, L.; Lozano, K.; Padilla-Gainza, V.; Alejandro Lozano-Morales, S. Photocatalytic degradation of methylene blue using PMMA/TiO2 nanoparticles composites fibers obtained through centrifugal spinning. International Journal of Environmental Science and Technology 2024, 21, 4611-4624.
33. Shanmugam, M.; Alsalme, A.; Alghamdi, A.; Jayavel, R. Photocatalytic properties of graphene-SnO2-PMMA nanocomposite in the degradation of methylene blue dye under direct sunlight irradiation. Materials Express 2015, 5, 319-326.
34. Ounas, O.; El Foulani, A.A.; Lekhlif, B.; Jamal-Eddine, J. Immobilization of TiO2 into a poly methyl methacrylate (PMMA) as hybrid film for photocatalytic degradation of methylene blue. Materials Today: Proceedings 2020, 22, 35-40.
35. Liu, F.; Han, C.; Sun, P.; Wang, G.; Li, J.; Chang, Q. Spherical CdS Nanoparticles Precipitated from a Cadmium Thiosulfate Complex Using Ultraviolet Light for Photocatalytic Dye Degradation. Metals 2023, 13, 554.

Most read articles by the same author(s)