EVALUATION OF PHAGE ANTIBIOTIC SYNERGISM AGAINST STAPHYLOCOCCUS AUREUS ISOLATED FROM THE WOUNDS OF DIABETIC PATIENTS

Main Article Content

Rimsha Kanwal
Kaleem Ullah
Sania Mubeen
Farwa Humak
Muhammad Usman
Mah Noor Rehman
Muhammad Sulaman Toor
Aslam Abdullah
Sajida Mustafa
Saqib Ali
Saifuddin
Rabia Kanwar
Muhammad Aamir Aslam

Keywords

S. aureus, Catalase, Mannitol Salt Agar, Blood Agar, Bacteriophages, Antibiotics, Double Agar Overlay

Abstract

Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that can thrive under both aerobic and anaerobic conditions. It is spherical in shape and forms clusters resembling grapes. On agar media, it produces colonies with a distinctive golden or yellow color. S. aureus has the ability to tolerate high concentrations of salt. It yielded positive results for catalase, coagulase and mannitol fermentation tests. This pathogenic bacterium is the cause of infection in hospital and community settings. In immunosuppressed individuals, such as diabetics, foot ulcers are a common complication, affecting approximately 15% of diabetics. These ulcers create an environment that promotes microbial colonization and growth, of which S. aureus is an important colonizer. In addition, S. aureus has developed resistance to a variety of antibiotics. In this study, we collected 50 samples from different hospitals in Faisalabad. These samples were cultured on a specific agar medium to isolate and purify S. aureus. To confirm the presence of this bacterium, biochemical tests were performed. Phages specifically targeting S. aureus were isolated using the double agar overlay method. We assessed the synergistic effect of phage (106 PFU/ml) and antibiotic against S. aureus by measuring the optical density (OD) of bacterial cultures before and after treatment. Analyze the difference in OD values ​​to assess the effect of the treatments. The main purpose of this study was to explore the potential of phages as an alternative therapy and to investigate their synergistic effects when combined with antibiotics in the treatment of S. aureus. Our findings suggest that the combination of phages and antibiotics holds promise for the development of phage-based approaches to control bacterial infections.

Abstract 239 | Pdf Downloads 38

References

1. Boulton, A. J., Vileikyte, L., Ragnarson-Tennvall, G., & Apelqvist, J. (2005). The global burden of diabetic foot disease. The Lancet, 366(9498), 1719-1724.
2. Chambers, H. F., & DeLeo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7(9), 629-641.
3. Chang, R. Y. K., Das, T., Manos, J., Kutter, E., Morales, S., & Chan, H.-K. (2019). Bacteriophage PEV20 and ciprofloxacin combination treatment enhances removal of Pseudomonas aeruginosa biofilm isolated from cystic fibrosis and wound patients. The AAPS journal, 21, 1-8.
4. Church, D., Elsayed, S., Reid, O., Winston, B., & Lindsay, R. (2006). Burn wound infections. Clinical microbiology reviews, 19(2), 403-434.
5. Diallo, K., & Dublanchet, A. (2022). Benefits of Combined phage–antibiotic therapy for the control of antibiotic-resistant bacteria: a literature review. Antibiotics, 11(7), 839.
6. Dupuis, M.-È., Villion, M., Magadán, A. H., & Moineau, S. (2013). CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance. Nature communications, 4(1), 2087.
7. Esmael, A., Azab, E., Gobouri, A. A., Nasr-Eldin, M. A., Moustafa, M. M., Mohamed, S. A., . . . Abdelatty, A. M. (2021). Isolation and characterization of two lytic bacteriophages infecting a multi-drug resistant Salmonella Typhimurium and their efficacy to combat salmonellosis in ready-to-use foods. Microorganisms, 9(2), 423.
8. García, M. S., De la Torre, M. Á., Morales, G., Peláez, B., Tolón, M. J., Domingo, S., . . . García, N. (2010). Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. Jama, 303(22), 2260-2264.
9. Garneau, J. E., Dupuis, M.-È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., . . . Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67-71.
10. Gómez Inca, A. N., & Véliz García, A. M. (2023). Caracterización del perfil de susceptibilidad de Pseudomonas spp. en cepas procedentes del cepario de la carrera de Laboratorio Clínico-PUCE. PUCE-Quito,
11. Haq, I. U., Chaudhry, W. N., Akhtar, M. N., Andleeb, S., & Qadri, I. (2012). Bacteriophages and their implications on future biotechnology: a review. Virology journal, 9(1), 1-8.
12. Jensen, K. C., Hair, B. B., Wienclaw, T. M., Murdock, M. H., Hatch, J. B., Trent, A. T., . . . Berges, B. K. (2015). Isolation and host range of bacteriophage with lytic activity against methicillin-resistant Staphylococcus aureus and potential use as a fomite decontaminant. PloS one, 10(7), e0131714.
13. Jo, A., Kim, J., Ding, T., & Ahn, J. (2016). Role of phage-antibiotic combination in reducing antibiotic resistance in Staphylococcus aureus. Food science and biotechnology, 25, 1211-1215.
14. Kasman, L. M., & Porter, L. D. (2022). Bacteriophages. In StatPearls [Internet]: StatPearls Publishing.
15. Kaur, S., Harjai, K., & Chhibber, S. (2012). Methicillin-resistant Staphylococcus aureus phage plaque size enhancement using sublethal concentrations of antibiotics. Applied and environmental microbiology, 78(23), 8227-8233.
16. Kavitha, K. V., Tiwari, S., Purandare, V. B., Khedkar, S., Bhosale, S. S., & Unnikrishnan, A. G. (2014). Choice of wound care in diabetic foot ulcer: A practical approach. World journal of diabetes, 5(4), 546.
17. Kebede, A., Kemal, J., Alemayehu, H., & Habte Mariam, S. (2016). Isolation, identification, and antibiotic susceptibility testing of Salmonella from slaughtered bovines and ovines in Addis Ababa Abattoir Enterprise, Ethiopia: a cross-sectional study. International journal of bacteriology, 2016.
18. Kim, M., Jo, Y., Hwang, Y. J., Hong, H. W., Hong, S. S., Park, K., & Myung, H. (2018). Phage-antibiotic synergy via delayed lysis. Applied and environmental microbiology, 84(22), e02085-02018.
19. Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E., & Johnson, R. P. (2009). Enumeration of bacteriophages by double agar overlay plaque assay. Bacteriophages: methods and protocols, volume 1: isolation, characterization, and interactions, 69-76.
20. Li, X., Hu, T., Wei, J., He, Y., Abdalla, A. E., Wang, G., . . . Teng, T. (2021). Characterization of a novel bacteriophage Henu2 and evaluation of the synergistic antibacterial activity of phage-antibiotics. Antibiotics, 10(2), 174.
21. Luong, T., Salabarria, A.-C., Edwards, R. A., & Roach, D. R. (2020). Standardized bacteriophage purification for personalized phage therapy. Nature Protocols, 15(9), 2867-2890.
22. Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Virulence mechanisms of bacterial pathogens, 481-511.
23. Nobrega, F. L., Costa, A. R., Kluskens, L. D., & Azeredo, J. (2015). Revisiting phage therapy: new applications for old resources. Trends in microbiology, 23(4), 185-191.
24. Owuama, C. I. (2017). Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. African journal of microbiology research, 11(23), 977-980.
25. Pallavali, R. R., Degati, V. L., Lomada, D., Reddy, M. C., & Durbaka, V. R. P. (2017). Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PloS one, 12(7), e0179245.
26. Perez, L. R. R., Dias, C., & d'Azevedo, P. A. (2008). Agar dilution and agar screen with cefoxitin and oxacillin: what is known and what is unknown in detection of meticillin-resistant Staphylococcus aureus. Journal of medical microbiology, 57(8), 954-956.
27. Plipat, N. (2012). Methicillin-resistant Staphylococcus aureus (MRSA) exposure assessment in hospital environment. University of Michigan,
28. Rahmani, R., Zarrini, G., Sheikhzadeh, F., & Aghamohammadzadeh, N. (2015). Effective phages as green antimicrobial agents against antibiotic-resistant hospital Escherichia coli. Jundishapur journal of microbiology, 8(2).
29. Rasigade, J.-P., & Vandenesch, F. (2014). Staphylococcus aureus: a pathogen with still unresolved issues. Infection, genetics and evolution, 21, 510-514.
30. Rasool, M. H., Yousaf, R., Siddique, A. B., Saqalein, M., & Khurshid, M. (2016). Isolation, characterization, and antibacterial activity of bacteriophages against methicillin-resistant Staphylococcus aureus in Pakistan. Jundishapur journal of microbiology, 9(10).
31. Rastogi, V., Verma, N., Mishra, A. K., Nath, G., Gaur, P. K., & Verma, A. (2018). An overview on bacteriophages: A natural nanostructured antibacterial agent. Current drug delivery, 15(1), 3-20.
32. Rathod, V. S., & Kasturi, R. S. (2017). Emergence of multi-drug resistant strains among bacterial isolates in burn wound swabs in a tertiary care centre, Nanded, Maharashtra, India. Int J Res Med Sci, 5(3), 973-977.
33. Richard, J. L., Lavigne, J. P., & Sotto, A. (2012). Diabetes and foot infection: more than double trouble. Diabetes/Metabolism Research and Reviews, 28, 46-53.
34. Sangha, K. K., Kumar, B., Agrawal, R. K., Deka, D., & Verma, R. (2014). Proteomic characterization of lytic bacteriophages of Staphylococcus aureus Isolated from Sewage Affluent of India. International scholarly research notices, 2014.
35. Seed, K. D. (2015). Battling phages: how bacteria defend against viral attack. PLoS pathogens, 11(6), e1004847.
36. Shahi, S. K., & Kumar, A. (2016). Isolation and genetic analysis of multidrug resistant bacteria from diabetic foot ulcers. Frontiers in microbiology, 6, 1464.
37. Simon, K., Pier, W., Krüttgen, A., & Horz, H.-P. (2021). Synergy between Phage Sb-1 and oxacillin against methicillin-resistant Staphylococcus aureus. Antibiotics, 10(7), 849.
38. Singh, N., Armstrong, D. G., & Lipsky, B. A. (2005). Preventing foot ulcers in patients with diabetes. Jama, 293(2), 217-228.
39. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., . . . Mbanya, J. C. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice, 183, 109119.
40. Tiwari, S., Pratyush, D. D., Gupta, B., Dwivedi, A., Chaudhary, S., Rayicherla, R. K., . . . Singh, S. K. (2013). Prevalence and severity of vitamin D deficiency in patients with diabetic foot infection. British Journal of Nutrition, 109(1), 99-102.
41. Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler Jr, V. G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical microbiology reviews, 28(3), 603-661.
42. Vashist, H., Sharma, D., & Gupta, A. (2013). A review on commonly used biochemical test for bacteria. Innovare Journal of Life Science, 1(1), 1-7.
43. Wang, L., Tkhilaishvili, T., & Trampuz, A. (2020). Adjunctive use of phage Sb-1 in antibiotics enhances inhibitory biofilm growth activity versus rifampin-resistant Staphylococcus aureus strains. Antibiotics, 9(11), 749.
44. Zubair, M., Malik, A., & Ahmad, J. (2011). Clinico-microbiological study and antimicrobial drug resistance profile of diabetic foot infections in North India. The Foot, 21(1), 6-14.

Most read articles by the same author(s)

1 2 > >>