QUALITATIVE AND QUANTITATIVE ANALYSIS OF PROTEINS CONTENTS OF FOUR WILD MEDICINAL MUSHROOMS

Main Article Content

Abdur Rahim Khan
Muhammad Fiaz
Ghulam Mujtaba Shah
Tariq Saiff Ullah
Amtul Sami
Tahira Batool
Rahmat Ali Khan
Gulnaz Parveen
Kanwal Raina

Keywords

Mushrooms, proteins contents, SDS-PAGE, Qualitative and quantitative analysis, Post translational modifications

Abstract

Background: Mushrooms are renowned for their protein richness, yet research literature on large-scale protein analysis of mushrooms remains limited. This study represents a pioneering endeavor in the proteomic analysis of aqueous extracts from four wild mushroom species including Phallus impudicus (P. impudicus), Trametesversicolor (T. versicolor), Pisolithusarhizus (P. arhizus ) and Tyromycescheoneus (T.cheoneus).


Methodology: Bradford method was used to quantify the total protein contents. Subsequent analysis involved one-dimensional gel electrophoresis (1-DGE) for proteins separation. PEAKS X was used for identification of peptides and proteins in the selected mushrooms species.


Results: Proteomic quantitative analysis results indicated that the maximum total protein contents were quantified in T. chioneus(330.26µg/10mg), while the minimum inP. impudicus(76.06µg/ 10mg). In proteomic qualitative analysis 462 proteins and 469 peptide sequences were identified in P. impudicus which was categorized into 55 functional protein groups. In T. versicolor, 161 proteins and 290 peptides  sequences were identified, distributed in 16 diverse functional groups. Similarly in P.arhizus, 129 proteins and 192 peptides belonging to 18 functional groups and in T. cheoneus, 76 proteins and 160 peptides were identified and categorized in 14 diverse functional groups. Interestingly, there were 18 proteins common in all selected mushrooms. In the present study a lot of PTMs (Post translational modifications) were detected in selected four mushrooms.


Conclusions: The outcomes of this study has the potential to serve as a foundation for the industrial production of food and health-related products derived from these mushroom species.

Abstract 134 | pdf Downloads 46

References

1. Agrawal, G. K., Yonekura, M., Iwahashi, Y., Iwahashi, H., &Rakwal, R. (2005). System, trends and perspectives of proteomics in dicot plants: Part I: Technologies in proteome establishment. Journal of Chromatography B, 815 (12): 109-123. https://doi.org/10.1016/j.jchromb.2004.11.023
2. Amanat, M. A., Farrukh, A., Ishaq, M. U. B. M., Shafqat, B. B., Haidri, S. H., Amin, R., ...&Khattak, S. H. Potential of nanotechnology to replace cancer stem cells. Current stem cell research & therapy. 19(6):820-831.
3. Anusiya, G., GowthamaPrabu, U., Yamini, N. V., Sivarajasekar, N., Rambabu, K., Bharath, G., & Banat, F. (2021). A review of the therapeutic and biological effects of edible and wild mushrooms.Bioengineered, 12(2), 11239-11268.
4. Ariaeenejad, S., &Motamedi, E. (2023).Improved saccharification of rice straw by removing phenolic compounds using a stable immobilized metagenome-derived laccase on sodium alginate-based hydrogel. Biochemical Engineering Journal, 198, 109021.
5. Bierend, D. (2021). In search of mycotopia: citizen science, fungi fanatics, and the untapped potential of mushrooms. Chelsea Green Publishing.
6. Bulam, S., Karadeniz, M., Bakir, T. K., &Ünal, S. (2022). Assessment of total phenolic, total flavonoid, metal contents and antioxidant activities of Trametesversicolor and Laetiporussulphureus. ActaScientiarumPolonorumHortorumCultus, 21(5): 39-47. https://doi.org/10.24326/asphc.2022.5.4
7. Deo, G. S., Khatra, J., Buttar, S., Li, W. M., Tackaberry, L. E., Massicotte, H. B., ...& Lee, C. H. (2019). Antiproliferative, immunostimulatory, and anti-inflammatory activities of extracts derived from mushrooms collected in HaidaGwaii, British Columbia (Canada). International journal of medicinal mushrooms, 21(7): 55-60. https:// doi: 10.1615/IntJMedMushrooms.2019031193
8. Dinçer, E., Işık, H., Hepokur, C., Tutar, U., &Çelik, C. (2023).Cytotoxic, Antioxidant, Antibiofilm, and Antimicrobial Activities of Mushroom Species from Turkey. International Journal of Medicinal Mushrooms, 25.https://doi.org/10.1615/intjmedmushrooms.2023047802
9. Donadio, G., Nocera, R., Tedesco, C., De Riccardis, F., & De Tommasi, N. (2022).Pisolithusarhizus (Scop.)Rauschert: chemical composition and biological activity. PlantaMedica, 88 (15): 1498-1498. https://doi.org/10.1016/j.phytochem.2023.113635
10. Farrukh A., S.H. Khattak, I. Kaleem, S. Begum, K. Jamil, T. Kamal, M.N. Riaz, N.R. Siddiqui, R. Ikram, S. Noor and G.M. Ali. 2022. Plant Based Nanotechnology – A New Trend in Therapeutic Approaches of Diabetes. Endo &DiabOpnAcc J. 1(1): 1-5..EDOAJ.MS.ID.000501.
11. Farrukh, A., Khattak, S. H., Kaleem, I., Basheer, S., Bangash, S. A. K., Ali, G. M., ...& Kaplan, A. (2023). Evaluation of counteraction potential of ZnO-NPs and/or piperacillin-tazobactam against multi-drug resistant Pseudomonas aeruginosa and MCF-7 and HepG2 cell lines. Polish J. Environ. Stud, 33: 1-11
12. Hamdan M, Righetti P G (2005). Proteomics Today: Protein Assessment and Biomarkers Using Mass Spectrometry, 2-D Electrophoresis and Microarray Technology; Wiley-VCH: Hoboken, NJ. http://dx.doi.org/10.1128/microbe.1.151.2
13. Imdad, K., Abualait, T., Kanwal, A., AlGhannam, Z.T., Bashir, S., Farrukh, A., Khattak, S.H., Albaradie, R., Bashir, S. 2022. The Metabolic Role of Ketogenic Diets in Treating Epilepsy. Nutrients. 14, 5074.https://doi.org/10.3390/nu14235074.
14. Imdad, K.; Abualait, T.; Kanwal, A.; Alghannam, Z.T.; Bashir, S.; Farrukh, A.; Khattak, S.H.; Albaradie, R.; Bashir, S. 2022. Metabolic Role of Ketogenic Diets in Treating Epilepsy.Encyclopedia. Available online: https://encyclopedia.pub/entry/38754
15. Irmer H, Tillack M, Biller L, Handal G, Leippe M, Roeder T, Tannich E, Bruchhaus I.( 2009). Major cysteine peptidases of Entamoebahistolytica are required for aggregation and digestion of erythrocytes but are dispensable for phagocytosis and cytopathogenicity. MolMicrobiol. 72(3):658-67. doi:10.1111/j.1365-2958.2009.06672
16. Jamil K, Khattak SH, Farrukh A, Begum S, Riaz MN, Muhammad A, Kamal T, Taj T, Khan I, Riaz S, Batool H. 2022. Biogenic Synthesis of Silver Nanoparticles Using Catharanthus roseus and Its Cytotoxicity Effect on Vero Cell Lines.Molecules.27(19):6191.
17. Khattak S. H., Sania B., Anum F., Imdad K., Khansa J. 2022. Nigella Sativa, A Myth or Reality: A New Trend in Therapeutic Approaches of Kalonji. Biomed J Sci& Tech Res. 47(2)-38248-38253.
18. Khattak, S.H., Imdad K., Anum F., Saima N., Khansa J., Tahira K., Nouman R.S. and Ghulam M.A. 2022. Fruit Ripening Characterization and Amylase Mystery in Bananas. 4(1): 1-9. GJNFS.MS.ID.000577. DOI: 10.33552/GJNFS.2022.04.000577.
19. Kozarski, M. S., Klaus, A. S., Lazić, V. V., Stevanović, S. M., &Jakovljević, D. M. (2021).ANTIOXIDATIVE AND IMMUNOMODULATING POTENTIAL OF THE MUSHROOM Phellinuslinteus. In 2nd International UNIFood Conference, University of Belgrade, 2nd International UNIfood Conference online.
20. Laemmli UK. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 15; 227(5259):680-5. doi: 10.1038/227680a0
21. Li, Z., Li, S., Luo, M., Jhong, J. H., Li, W., Yao, L., ...& Lee, T. Y. (2022). dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic acids research, 50(D1), D471-D479.
22. Li, Z., Luo, R., Zhang, Y., Yan, X., & Pang, Q. (2018).Effective protein extraction from mycelium and fruiting body of Auriculariaauricula for proteomics studies. International Journal of Food Properties, 21(1), 2156-2166.
23. Liao, Y., & Tang, L. (2014).The critical roles of HSC70 in physiological and pathological processes. Current Pharmaceutical Design, 20(1), 101-107.
24. Liu, T., Daniels, C. K., & Cao, S. (2012). Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacology & therapeutics, 136 (3): 354–374. doi: 10.1016/j.pharmthera.2012.08.014
25. Lu, D. (2023). The Spread of a Sino-Tibetan Marvel. In The Global Circulation of Chinese MateriaMedica, 1700–1949: A Microhistory of the Caterpillar Fungus (pp. 25-96). Cham: Springer Nature Switzerland.
26. Łysakowska, P., Sobota, A., &Wirkijowska, A. (2023). Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production—A Review. Molecules, 28 (14): 5393. https://doi.org/10.3390/molecules28145393
27. Moreda-Piñeiro, A., García-Otero, N., & Bermejo-Barrera, P. (2014).A review on preparative and semi-preparative offgel electrophoresis for multidimensional protein/peptide assessment. Analyticachimicaacta, 836, 1-17.
28. Muhammad, B. L., & Suleiman, B. (2015).Global development of mushroom biotechnology.Int J Emerg Trends SciTechnol, 2(06), 2660-2669.
29. Panda, J., Mishra, A. K., Nath, P. C., Mahanta, S., Sharma, M., Nayak, P. K., ...& Sridhar, K. (2024). Wild edible mushrooms to achieve sustainable development goals: Novel sources for food security, health, and well-being. Food Bioscience, 104277.
30. Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H. (2007). The death domain super family in intracellular signaling of apoptosis and inflammation.Annu Rev Immunol. 25:561-86. https://doi.org/10.1146/annurev.immunol.25.022106.141656.
31. PROTOCOL (adapted from Millipore procedure) See http://www.millipore.com/ catalogue/module/c5737
32. Rehman M.A, Saleem R, Hasan SW, Inam S, Uddin S.Z, Saeed M, Noor S, Riaz M.N., Ali G.M. And Khattak S.H. 2020. Economic Assessment Of Cereal -Legume Intercropping System, A Way Forward For Improving Productivity And Sustaining Soil Health. IJBPAS. 9(5): 1078-1089.
33. Reis F S, Barros L, Martins A, Ferreira I C F R (2012). Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study. Food Chem, Toxicol (50):191−197. https://doi.org/10.1016/j.fct.2011.10.056
34. Retanal, C., Ball, B., & Geddes-McAlister, J. (2021). Post-translational modifications drive success and failure of fungal–host interactions. Journal of Fungi, 7(2), 124.
35. Rivera, C. E., Rosales, J. D., Freites-Perez, J. C. and Rodriguez, E. (2018).Very Low Molecular Weight Proteins Electrophoresis Protocol. Bio-101: e3093. DOI: 10.21769/BioProtoc.3093
36. Seifert, K. (2022). The hidden kingdom of fungi: Exploring the microscopic world around us. Univ. of Queensland Press.
37. Siddiqui N, Muhammad A, Ali G, Raza S, Khan MR, Shahzad A, Hameed S. 2017. Expression Analysis Of Amylase Gene And Starch Degradation During Fruit Development And Ripening Stages Of Exotic Cultivars Of Banana. Proceedings Of The Pakistan Academy Of Sciences. 2017(54): 117-124.
38. Yang, X., &Tohda, C. (2018). Heat shock cognate 70 inhibitor, VER-155008, reduces memory deficits and axonal degeneration in a mouse model of Alzheimer’s disease. Frontiers in Pharmacology, (9): 48. https://doi.org/10.3389%2Ffphar.2018.00048
39. Yap HYY, Chooi YH, Firdaus-Raih M (2014). The genome of the Tiger Milk mushroom, Lignosusrhinocerotis, provides insights into the genetic basis of its medicinal properties. BMC Genomics (15): 635-36. https://doi.org/10.1186/1471-2164-15-635
40. Yu, Y., Alkasir, R., Farrukh, A., Riaz, N., Rasool, A., Kaleem, I. ... EldinDarwish, D. B. (2024). Synergistic Antibacterial Potential of Zno-Nps with Different Antibiotics against Multidrug-Resistant Escherichia coli and Pseudomonas aeruginosa. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/176158.
41. Yu, Y., Alkasir, R., Farrukh, A., Riaz, N., Rasool, A., Kaleem, I. ... EldinDarwish, D. B. (2024). Synergistic Antibacterial Potential of Zno-Nps with Different Antibiotics against Multidrug-Resistant Escherichia coli and Pseudomonas aeruginosa. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/176158
42. Zhang, X., Zhang, T., Zhao, Y., Jiang, L., & Sui, X. (2023).Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chemistry, 137712.
43. Zhou, Z., Sun, B., Nie, A., Yu, D., &Bian, M. (2020).Roles of aminoacyl-tRNAsynthetases in cancer. Frontiers in cell and developmental biology, 8, 599765.
44. Ziwei Li, Rui Luo, Yuexin Zhang, Xiufeng Yan & Qiuying Pang (2018) Effective protein extraction from mycelium and fruiting body of Auriculariaauricula for proteomics studies, International Journal of Food Properties, (21) :1, 2156-2166, https://doi.org/10.1080/ 10942912.2018.1499111

Most read articles by the same author(s)

1 2 > >>