IN-SILICO CHARACTERIZATION OF NON-SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN MDM2: IMPLICATIONS FOR CANCER SUSCEPTIBILITY
Main Article Content
Keywords
MDM2, Oncogene, Cancer biology, Therapeutic targets, Nucleotide polymorphisms, Non-Synonymous Single Nucleotide Polymorphisms
Abstract
The oncogene MDM2 (Murine Double Minute 2) was first found in DNA and bound to the paired acentric chromosome. 0SNPs (single nucleotide polymorphisms) are important for determining the genetic basis of several complicated human disorders. Non-synonymous single nucleotide polymorphisms (nsSNPs) are mutation in only a one nucleotide in sequences of any gene that has changed the specific synthesized protein in its function, structure and morphogenesis. Finding the affected SNPs in the genetic make-up of diseases remains a difficult task. The present Insilico study explored and identified the genetic variation that affects and modifies the expression of MDM2 genes. SIFT found that 36 SNPs in the MDM2 gene are harmful while polyphen2 analyzed 12 SNPs in MDM2 gene. An aggregate result was obtained by examining six tools with diverse views, and seven nsSNPs were shown to be the most likely to have a detrimental impact. I-Mutant and Project HOPE approaches were utilized to predict the mutant proteins' severe structural and functional instability, while the InterPro was utilised the predict SNP in crucial functional domains. Only 9 SNPs rs764034976, rs753663917, rs761546875, rs755429424, rs764918809, rs763077439, rs765555199, rs1475420873 and rs550783815 were discovered that influence the structure, function, and stability of the MDM2 protein synthesized by MDM2 gene. To our knowledge, there has never been any research on the SNPs of the MDM2 gene. This is the first study on the MDM2 gene using computation methods.
References
2. Alogheli, H., G. Olanders, W. Schaal, P. Brandt, and A. Karlén, 2017. Docking of macrocycles: comparing rigid and flexible docking in glide. J. chem. linformation modeling, 57(2): 190-202.
3. Aydin, G., M. N. Paksoy, M. D. Orhan, T. Avsar, M. Yurtsever, and S. Durdagi, 2020. Proposing novel MDM2 inhibitors: Combined physics‐driven high‐throughput virtual screening and in vitro studies. Chem. Biol. Drug Des. 96(1): 684-700.
4. Bachmann, H., D. Molenaar, F. Branco dos Santos, and B. Teusink, 2017. Experimental evolution and the adjustment of metabolic strategies in lactic acid bacteria. FEMS Immunol Med Microbiol, 41(Supp_1): S201-S219.
5. Baeissa, H., G. Benstead-Hume, C. J. Richardson, and F. M. Pearl, 2017. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors. Oncotarget, 8(13): 21290.
6. Bali, V., and Z. Bebok, 2015. Decoding mechanisms by which silent codon changes influence protein biogenesis and function. Int J Biochem Cell Biol, 64, 58-74.
7. Bhavaniramya, S., R.Vanajothi, S. Vishnupriya, M. S. Al-Aboody, R. Vijayakumar, and D. Baskaran, 2019. Computational characterization of deleterious snps in Toll-like receptor gene that potentially cause mastitis in dairy cattle. Biocatal Agric Biotechnol 19, 101151.
8. Bill, K. L. J., J.Garnett, I. Meaux, X. Ma, C. J. Creighton, S. Bolshakov, . . . B. C. Prudner, 2016 . SAR405838: a novel and potent inhibitor of the MDM2: p53 axis for the treatment of dedifferentiated liposarcoma. Clin cancer Res, 22(5): 1150-1160.
9. Biswas, S., E. Killick, A. G. Jochemsen, and J. Lunec, 2014. The clinical development of p53-reactivating drugs in sarcomas–charting future therapeutic approaches and understanding the clinical molecular toxicology of Nutlins. Expert Opin Investig Drugs, 23(5): 629-645.
10. Boeckmann, B., A. Bairoch, R. Apweiler, M.-C. Blatter, A. Estreicher, E. Gasteiger, . . . I. Phan, 2003 . The SWISS-PROT protein knowledgebase and its supplement trembl in 2003. Nucleic Acids Res, 31(1): 365-370.
11. Bond, G. L., W. Hu, and A. Levine, 2005. A single nucleotide polymorphism in the MDM2 gene: from a molecular and cellular explanation to clinical effect. Cancer Res, 65(13): 5481-5484.
12. Botstein, D., and N. Risch, 2003. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat genet , 33(3): 228-237.
13. Brister, J. R., D. Ako-Adjei, Y. Bao, and O. Blinkova, 2015. NCBI viral genomes resource. Nucleic acids Res, 43(D1): D571-D577.
14. Bromberg, Y., and B. Rost, 2007. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic acids Res, 35(11): 3823-3835.
15. Budowle, B., and A. Van Daal, 2008. Forensically relevant SNP classes. Biotech
16. 44(5): 603-610.
17. Capriotti, E., R. Calabrese, and R. Casadio, 2006. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinform, 22(22): 2729-2734.
18. Capriotti, E., and P. Fariselli, 2017. Phd-snpg: a webserver and lightweight tool for scoring single nucleotide variants. Nucleic acids Res, 45(W1): W247-W252.
19. Cardon, L. R., and L. J. Palmer, 2003. Population stratification and spurious allelic association. The Lancet, 361(9357): 598-604.
20. Celestino, P. D. S. F. 2015. Oncogenic Mechanisms of Activation and Resistance of the type III Receptor Tyrosine Kinase family. École normale supérieure de Cachan-ENS Cachan,
21. Chakravarti, A. 1999. Population genetics—making sense out of sequence. Nat Genet, 21(1): 56-60.
22. Chang, F., S. Syrjänen, A. Tervahauta, and K. Syrjänen, 1993. Tumourigenesis associated with the p53 tumour suppressor gene. Br J Cancer , 68(4): 653-661.
23. Chen, H., G. Reed, J. Guardia, S. Lakhan, O. Couture, E. Hays, and N. Chandar, 2013. Vitamin D directly regulates Mdm2 gene expression in osteoblasts. Biochem Biophys Res Commun 430(1): 370-374.
24. Chen, J., S. M. Ng, C. Chang, Z. Zhang, J.-C. Bourdon, D. P. Lane, and J. Peng, 2009. P53 isoform Δ113p53 is a p53 target gene that antagonizes p53 apoptotic activity via bclxl activation in zebrafish. Genes Dev 23(3): 278-290.
25. Chen, S., A.-E. Rotaru, F. Liu, J. Philips, T. L Woodard, K. P. Nevin, and D. R. Lovley, 2014. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour Technol 173, 82-86.
26. Chen, Y.-A., E. Yogo, N. Kurihara, T. Ohno, C. Higuchi, M. Rokushima, and K. Mizuguchi, 2019. Assessing drug target suitability using targetmine. F1000Res, 8.
27. Cheng, C.-H. C., and X. Zhuang, 2020. Molecular Origins and Mechanisms of Fish Antifreeze Evolution. Antifreeze Proteins Volume 1, 275-313.
28. Chitranshi, N., Y. Dheer, Wall, R. Vander V. Gupta, M. Abbasi, S. L. Graham, and V. Gupta, 2017. Computational analysis unravels novel destructive single nucleotide polymorphisms in the non-synonymous region of human caveolin gene. Gene Rep 6, 142-157.
29. Cissé, M. Y., S. Pyrdziak, N. Firmin, L. Gayte, M. Heuillet, F. Bellvert, . . . G. Arena, 2020. Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma. Sci Transl Med , 12(547).
30. Colombo, E., L. Spaccini, G. Negri, L. Volpi, C. Gervasini, D. Lazarevic, . . . L.Larizza, 2014. Viable phenotype associated with novel mutations of integrin 3, encoding a laminins receptor involved in structural and functional organization of lung, kidney and skin epithelia. Paper presented at the “Il Sequenziamento di Nuova Generazione in Genetica Umana e Medica”(Evento SIGU).
31. Colovos, C., and T. O. Yeates, 1993. Verification of protein structures: patterns of nonbonded atomic interactions. Protein sci, 2(9): 1511-1519.
32. Consortium, U. 2015. Uniprot: a hub for protein information. Nucl Acids Res, 43(D1): D204-D212.
33. Coop, G., J. K. Pickrell, J. Novembre, S. Li, J. Kudaravalli, D. Absher, . . . J. K Pritchard, 2009. The role of geography in human adaptation. PLoS Genet 5(6): e1000500.
34. Cornillie, J., A. Wozniak, H. Li, Y. Gebreyohannes, J. Wellens, D. Hompes, . . . P. Schöffski, 2020. Anti-tumor activity of the MDM2-TP53 inhibitor BI-907828 in dedifferentiated liposarcoma patient-derived xenograft models harboring MDM2 amplification. Clin Transl Oncol, 22(4): 546-554.
35. Craig, A. J., J. Von Felden, T. Garcia-Lezana, S. Sarcognato, and A. Villanueva, 2020. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 17(3): 139-152.
36. Danielson, M. L., and M. A. Lill, 2012 . Predicting flexible loop regions that interact with ligands: the challenge of accurate scoring. Proteins Struct.Funct, and Bioinform, 80(1): 246-260.
37. Dembla, V., N. Somaiah, P. Barata, K., Fu, S. Hess, F. Janku,. . . V. Subbiah, 2018. Prevalence of MDM2 amplification and coalterations in 523 advanced cancer patients in the MD Anderson phase 1 clinic. Oncotarget, 9(69): 33232.
38. Doss, C. G. P., R. Rajasekaran, C. Sudandiradoss, K. Ramanathan, R. Purohit, and R. Sethumadhavan, 2008. A novel computational and structural analysis of nssnps in CFTR gene. Genom Med, 2(1): 23-32.
39. Ebben, J. J., and A. C. Johnson, 2005. Efficiency, flexibility, or both? Evidence linking strategy to performance in small firms. Strateg Manag J, 26(13): 1249-1259.