INTESTINAL MICROBIAL COLONIZATION RESISTANCE: A NOVEL DEVELOPMENT IMPACTING GROUP B STREPTOCOCCUS COLONIZATION

Main Article Content

Noorulain Hyder
Farzana Sadaf
Ale Zehra

Keywords

Probiotics, intestinal colonization resistance, GBS, antibiotic resistance

Abstract

Premature delivery, suppurative meningitis, pneumonia in neonates, septicemia, intrauterine infections in pregnant women, and even mortality may all be caused by Group B Streptococcus (GBS). The U.S. Centers for Disease Control and Prevention advise that all individuals who are pregnant undergo screening for GBS between 35 and 37 weeks of gestation, and those who receive a positive test result should be administered intrauterine antibiotic prophylaxis (IAP). Antibiotics may lead to adverse reactions and are ineffective in preventing GBS, a condition that manifests later in life. Given the rising challenge of antibiotic resistance among bacteria, it is crucial to investigate more efficient and economically viable strategies to prevent infections caused by GBS colonization. GBS is a zoonotic disease that may be spread by food, hence research on its colonization in the intestinal tract is crucial. Intestinal symbiotic bacteria may lower the chance of GBS retrogradely infecting the reproductive system by preventing intestinal pathogens from colonizing and growing via an intestinal colonization resistance mechanism. This approach holds significant promise as a leading strategy for preventing GBS. This article focused on the effects of probiotics derived from intestinal colonization resistance on GBS colonization infection.
Abstract 37 | PDF Downloads 18

References

1. Raabe V N, Shane A L. Group B Streptococcus (Streptococcus agalactiae) [J]. Microbiol Spectr, 2019, 7(2): GPP3-0007-2018
2. Barkham T, Sheppard A, Jones N, et al. Streptococcus agalactiae that caused meningitis in healthy adults in 1998 are ST283, the same type that caused a food-borne outbreak of invasive sepsis in 2015: An observational molecular epidemiology study[J]. Clin Microbiol Infect, 2018, 24(8): 923-925
3. Kalimuddin S, Chen S L, Lim C T K, et al. 2015 Epidemic of severe Streptococcus agalactiae sequence type 283 infections in Singapore associated with the consumption of raw freshwater fish: A detailed analysis of clinical, epidemiological, and bacterial sequencing data[J]. Clin Infect Dis, 2017, 64(suppl_2): S145-s152.
4. Luangraj M, Hiestand J, Rasphone O, et al. Invasive Streptococcus agalactiae ST283 infection after fish consumption in two sisters, Lao PDR[J]. Wellcome Open Res, 2022, 7: 148.
5. Zwe Y H, Goh Z H E, Chau M L, et al. Survival of an emerging foodborne pathogen: Group B Streptococcus (GBS) serotype III sequence type (ST) 283-under simulated partial cooking and gastric fluid conditions[J]. Food Sci Biotechnol, 2019, 28(3): 939-944
6. Chau M L, Chen S L, Yap M, et al. Group B Streptococcus infections caused by improper sourcing and handling of fish for raw consumption, singapore, 2015-2016 [J]. Emerg Infect Dis, 2017, 23(12): 2002-10.
7. Graux E, Hites M, Martiny D, et al. Invasive group B Streptococcus among non-pregnant adults in BrusselsCapital Region, 2005-2019[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(3): 515-523.
8. Wahid H H, Mustapha Rounal P F D, Bahez A, et al. A review of group B Streptococcus (GBS) vaginal colonization and ascending intrauterine infection: Interaction between host immune responses and gbs virulence factors[J]. Acta Scientifica Malaysia, 2022: 17-22.
9. Liu Y, Liu J. Group B Streptococcus: Virulence factors and pathogenic mechanism[J]. Microorganisms, 2022, 10(12): 2483.
10. Huang J, Lin X Z, Zhu Y, et al. Epidemiology of group B streptococcal infection in pregnant women and diseased infants in Mainland China[J]. Pediatr Neonatol, 2019, 60(5): 487-495
11. Cho C Y, Tang Y H, Chen Y H, et al. Group B streptococcal infection in neonates and colonization in pregnant women: An epidemiological retrospective analysis[J]. J Microbiol Immunol Infect, 2019, 52(2): 265-272.
12. Ferreira M B, de-Paris F, Paiva R M, et al. Assessment of conventional PCR and real-time PCR compared to the gold standard method for screening Streptococcus agalactiae in pregnant women[J]. Braz J Infect Dis, 2018, 22(6): 449-454.
13. Brown A P, Denison F C. Selective or universal screening for GBS in pregnancy (review)[J]. Early Hum Dev, 2018, 126: 18-22.
14. Reid G, Bruce A W. Could probiotics be an option for treating and preventing urogenital infections?[J]. Medscape Womens Health, 2001, 6(5): 9.
15. Gomaa E Z. Human gut microbiota/microbiome in health and diseases: A review[J]. Antonie van Leeuwenhoek, 2020, 113(12): 2019-2040.

16. Bron P A, Kleerebezem M, Brummer R J, et al. Can probiotics modulate human disease by impacting intestinal barrier function?[J]. Brit J Nutr, 2017, 117(1): 93-107.
17. Buffie C G, Pamer E G. Microbiota-mediated colonization resistance against intestinal pathogens[J]. Nat Rev Immun, 2013, 13(11): 790-801.
18. Gao Y, Shang Q, Wei J, et al. The correlation between vaginal microecological dysbiosis-related diseases and preterm birth: A review[J]. Med Microecol, 2021, 8: 100043.
19. Yuan X Y, Liu H Z, Liu J F, et al. Pathogenic mechanism, detection methods and clinical significance of group B Streptococcus[J]. Future Microbiol, 2021, 16: 671-685.
20. Hickman M E, Rench M A, Ferrieri P, et al. Changing epidemiology of group B streptococcal colonization[J]. Pediatrics, 1999, 104(2 Pt 1): 203-209.
21. Tavares T, Pinho L, Bonifácio Andrade E. Group B streptococcal neonatal meningitis[J]. Clin Microbiol Rev, 2022, 35(2): e0007921.
22. Zhu Y, Lin X Z. Updates in prevention policies of earlyonset group B streptococcal infection in newborns[J]. Pediatr Neonatol, 2021, 62(5): 465-475.
23. Amabebe E, Anumba D O C. Female gut and genital tract microbiota-induced crosstalk and differential effects of short-chain fatty acids on immune sequelae[J]. Front Immunol, 2020, 11: 2184.
24. Korang S K, Safi S, Nava C, et al. Antibiotic regimens for early-onset neonatal sepsis[J]. Cochrane Database Syst Rev, 2021, 5(5): Cd013837.
25. Kuppala V S, Meinzen-Derr J, Morrow A L, et al. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants[J]. J Pediatr, 2011, 159(5): 720-725.
26. Cotten C M, Taylor S, Stoll B, et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants[J]. Pediatrics, 2009, 123(1): 58-66.
27. Cordero L, Ayers L W. Duration of empiric antibiotics for suspected early-onset sepsis in extremely low birth weight infants[J]. Infect Control Hosp Epidemiol, 2003, 24(9): 662-666.
28. Zimmermann P, Gwee A, Curtis N. The controversial role of breast milk in GBS late-onset disease[J]. J Infect, 2017, 74: S34-S40.
29. Li J, Liu L, Zhang H, et al. Severe problem of macrolides resistance to common pathogens in China[J]. Front Cell Infect Microbiol, 2023, 13: 1181633.
30. Weiss M E, Adkinson N F. Immediate hypersensitivity reactions to penicillin and related antibiotics[J]. Clin Allergy, 1988, 18(6): 515-540.
31. Hughes R C E, Williman J A, Gullam J E. Antenatal haemoglobin A1c centiles: Does one size fit all?[J]. Aust N Z J Obstet Gynaecol, 2018, 58(4): 411-416.
32. Jauréguy F, Carton M, Panel P, et al. Effects of intrapartum penicillin prophylaxis on intestinal bacterial colonization in infants[J]. J Clin Microbiol, 2004, 42(11): 5184-5188.
33. Shah T, Baloch Z, Shah Z, et al. The intestinal microbiota: impacts of antibiotics therapy, colonization resistance, and diseases[J]. Int J Mol Sci, 2021, 22(12): 6597.
34. Caballero-Flores G, Pickard J M, Núñez G. Microbiotamediated colonization resistance: Mechanisms and regulation[J]. Nat Rev Microbiol, 2023, 21(6): 347-360.
35. Zhang Y, Tan P, Zhao Y, et al. Enterotoxigenic Escherichia coli: Intestinal pathogenesis mechanisms and colonization resistance by gut microbiota[J]. Gut Microbes, 2022, 14(1): 2055943.
36. Cotter P D, Ross R P, Hill C. Bacteriocins - a viable alternative to antibiotics?[J]. Nat Rev Microbiol, 2013, 11(2): 95-105.
37. Rea M C, Sit C S, Clayton E, et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile[J]. Proceed National Acad Sci, 2010, 107(20): 9352-9357.
38. Hayes K, Cotter L, O’Halloran F. In vitro synergistic activity of erythromycin and nisin against clinical Group B Streptococcus isolates[J]. J Appl Microbiol, 2019, 127(5): 1381-1390.
39. Breukink E, Wiedemann I, van Kraaij C, et al. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic[J]. Science, 1999, 286(5448): 2361-2364

40. Bodaszewska-Lubas M, Brzychczy-Wloch M, Gosiewski T, et al. Antibacterial activity of selected standard strains of lactic acid bacteria producing bacteriocins-pilot study[J]. Postepy Hig Med Dosw (Online), 2012, 66: 787-794.
41. Ruíz F O, Gerbaldo G, García M J, et al. Synergistic effect between two bacteriocin-like inhibitory substances produced by Lactobacilli strains with inhibitory activity for Streptococcus agalactiae[J]. Curr Microbiol, 2012, 64(4): 349-356.
42. Ermolenko E I, Chernysh A, Martsinkovskaia I V, et al. Influence of probiotic enterococci on the growth of Streptococcus agalactiae[J]. Zh Mikrobiol Epidemiol Immunobiol, 2007(5): 73-77.
43. Shuster K A, Hish G A, Selles L A, et al. Naturally occurring disseminated group B Streptococcus infections in postnatal rats[J]. Comp Med, 2013, 63(1): 55-61.
44. Mélançon D, Grenier D. Production and properties of bacteriocin-like inhibitory substances from the swine pathogen Streptococcus suis serotype 2[J]. Appl Environ Microbiol, 2003, 69(8): 4482-4488.
45. Mota-Meira M, LaPointe G, Lacroix C, et al. MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens[J]. Antimicrob Agents Chemother, 2000, 44(1): 24-29.
46. Corrêa-Oliveira R, Fachi J L, Vieira A, et al. Regulation of immune cell function by short-chain fatty acids[J]. Clin Transl Immunol, 2016, 5(4): e73.
47. Alsharairi N A. The role of short-chain fatty acids in mediating very low-calorie ketogenic diet-infant gut microbiota relationships and its therapeutic potential in obesity[J]. Nutrients, 2021, 13(11): 3702.
48. Lai T J, Wang Y H, Chong E, et al. The impact of prenatal use of oral Clostridium butyricum on maternal group B Streptococcus colonization: A retrospective study[J]. Taiwan J Obstet Gynecol, 2021, 60(3): 442-448.
49. Muhammad A Y, Amonov M, Murugaiah C, et al. Intestinal colonization against Vibrio cholerae: Host and microbial resistance mechanisms[J]. AIMS Microbiol, 2023, 9(2): 346-374.
50. Marziali G, Foschi C, Parolin C, et al. In vitro effect of vaginal Lactobacilli against group B Streptococcus[J]. Microbial Pathogenesis, 2019, 136: 103692.
51. De Gregorio P R, Tomás M S J, Terraf M C L, et al. In vitro and in vivo effects of beneficial vaginal Lactobacilli on pathogens responsible for urogenital tract infections[J]. J Med Microbiol, 2014, 63(Pt 5): 685-696
52. Ducarmon Q R, Zwittink R D, Hornung B V H, et al. Gut microbiota and colonization resistance against bacterial enteric infection[J]. Microbiol Mol Biol Rev, 2019, 83(3): e00007-19.
53. Shabayek S, Spellerberg B. Group B streptococcal colonization, molecular characteristics, and epidemiology[J]. Front Microbiol, 2018, 9: 437.
54. Pietrocola G, Arciola C R, Rindi S, et al. Streptococcus agalactiae non-pilus, cell wall-anchored proteins: Involvement in colonization and pathogenesis and potential as vaccine candidates[J]. Front Immunol, 2018, 9: 602.
55. Nobbs A H, Lamont R J, Jenkinson H F. Streptococcus adherence and colonization[J]. Microbiol Mol Biol Rev, 2009, 73(3): 407-450.
56. Kim S, Covington A, Pamer E G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens[J]. Immunol Rev, 2017, 279(1): 90-105.
57. Dudík B, Kiňová Sepová H, Bilka F, et al. Mucin precultivated Lactobacillus reuteri E shows enhanced adhesion and increases mucin expression in HT-29 cells[J]. Antonie van Leeuwenhoek, 2020, 113(8): 1191-1200.
58. Bai Y, Lyu M, Fukunaga M, et al. Lactobacillus johnsonii enhances the gut barrier integrity via the interaction between GAPDH and the mouse tight junction protein JAM-2[J]. Food Funct, 2022, 13(21): 11021-11033.
59. Karczewski J, Troost F J, Konings I, et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298(6): G851-G859.
60. Parada Venegas D, De la Fuente M K, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277.
61. Donohoe D R, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metab, 2011, 13(5): 517-526.
62. Yan H, Ajuwon K M. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway[J]. PLoS One, 2017, 12(6): e0179586.
63. Brokaw A, Furuta A, Dacanay M, et al. Bacterial and host determinants of group B streptococcal vaginal colonization and ascending infection in pregnancy[J]. Front Cell Infect Microbiol, 2021, 11: 720789.
64. Cortes-Perez N G, de Moreno de LeBlanc A, GomezGutierrez J G, et al. Probiotics and trained immunity[J]. Biomolecules, 2021, 11(10): 1402.
65. Ghanavati R, Asadollahi P, Shapourabadi M B, et al. Inhibitory effects of Lactobacilli cocktail on HT-29 colon carcinoma cells growth and modulation of the Notch and Wnt/β-catenin signaling pathways[J]. Microbial Pathogenesis, 2020, 139: 103829.
66. De Gregorio P R, Juárez Tomás M S, Nader-Macías M E. Immunomodulation of Lactobacillus reuteri CRL1324 on group B Streptococcus vaginal colonization in a murine experimental model[J]. Am J Reprod Immunol, 2016, 75(1): 23-35.
67. Jump R L, Polinkovsky A, Hurless K, et al. Metabolomics analysis identifies intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice[J]. PLoS One, 2014, 9(7): e101267.
68. Borges S, Silva J, Teixeira P. The role of Lactobacilli andprobiotics in maintaining vaginal health[J]. Arch Gynecol Obstet, 2014, 289(3): 479-489.
69. Martín V, Cárdenas N, Ocaña S, et al. Rectal and vaginal eradication of Streptococcus agalactiae (GBS) in pregnant women by using Lactobacillus salivarius CECT 9145, a target-specific probiotic strain[J]. Nutrients, 2019, 11(4): 810.
70. Ho M, Chang Y Y, Chang W C, et al. Oral Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 to reduce group B Streptococcus colonization in pregnant women: A randomized controlled trial[J]. Taiwan J Obstet Gynecol, 2016, 55(4): 515-518.
71. Açikgöz Z C, Gamberzade S, Göçer S, et al. Inhibitor effect of vaginal lactobacilli on group B streptococci[J]. Mikrobiyol Bul, 2005, 39(1): 17-23.
72. Bodaszewska M, Brzychczy-Włoch M, Gosiewski T, et al. Evaluation of group B streptococcus susceptibility to lactic acid bacteria strains[J]. Med Dosw Mikrobiol, 2010, 62(2): 153-161.
73. Marsalková S, Cízek M, Vasil M, et al. Testing two Lactobacillus plantarum and Lactobacillus acidophilus strains for their suitability as a lipoid probiotic[J]. Berl Munch Tierarztl Wochenschr, 2004, 117(3-4): 145-147.
74. Patras K A, Wescombe P A, Rösler B, et al. Streptococcus salivarius K12 limits group B Streptococcus vaginal colonization[J]. Infect Immun, 2015, 83(9): 3438-3444.
75. De Gregorio P R, Juárez Tomás M S, Leccese Terraf M C, et al. Preventive effect of Lactobacillus reuteri CRL1324 on group B Streptococcus vaginal colonization in an experimental mouse model[J]. J Appl Microbiol, 2015, 118(4): 1034-1047.
76. Aloisio I, Mazzola G, Corvaglia L T, et al. Influence of intrapartum antibiotic prophylaxis against group B Streptococcus on the early newborn gut composition and evaluation of the anti-Streptococcus activity of bifidobacterium strains[J]. Appl Microbiol Biotechnol, 2014, 98(13): 6051-6060.
77. Tsapieva A, Duplik N, Suvorov A. Structure of plantaricin locus of Lactobacillus plantarum 8P-A3[J]. Benef Microbes, 2011, 2(4): 255-261.
78. Zárate G, Nader-Macias M E. Influence of probiotic vaginal Lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells[J]. Lett Appl Microbiol, 2006, 43(2): 174-180.
79. Cuevas-González P F, Liceaga A M, Aguilar-Toalá J E.Postbiotics and paraprobiotics: From concepts to applications[J]. Food Res Int, 2020, 136: 109502.