AN EXPRESSION SYSTEM BASED ON BACULOVIRUS WAS UTILIZED IN ORDER TO EXPRESS THE HEMAGGLUTININ HA1 SUBMIT OF THE INFLUENZA VIRUS

Main Article Content

Hira Aslam
Praveenkumar Periyasamy
Michel Bolis
Likowsky Desir

Keywords

Equine influenza virus, Vaccination, Inactivated whole virus vaccines, Baculovirus expression system, Recombinant hemagglutinin, Horse influenza, Subunit vaccines

Abstract

Background: Respiratory diseases in horses are predominantly caused by equine influenza virus (EIV) infection, with vaccination being the primary preventive measure using inactivated whole virus vaccines produced mainly in embryonated hen eggs.


Objective: This study explores an alternative approach to traditional egg-based vaccine production by investigating the feasibility of using a baculovirus expression system for recombinant horse influenza hemagglutinin production.


Methods: A baculovirus expression vector was employed to clone and express the hemagglutinin ectodomain (HA1 subunit). Expression was confirmed using SDS-PAGE and immunoblotting, with viral protein yield quantified at 20 μg/ml from recombinant baculovirus-infected cells. Immunological response was evaluated in BALB/c mice immunized with recombinant HA1.


Results: Recombinant hemagglutinin produced in baculovirus-infected cells elicited a robust antibody response in mice, indicating its potential as an antigen for subunit vaccinations and diagnostic applications.


Conclusion: Baculovirus-mediated expression of recombinant horse influenza hemagglutinin shows promise as an effective alternative to egg-based vaccine production, offering potential advantages such as scalability, cost-effectiveness, and reduced dependency on egg supply.

Abstract 219 | Pdf Downloads 66

References

1. Alqazlan, N., Astill, J., Raj, S., & Sharif, S. (2022). Strategies for enhancing immunity against avian influenza virus in chickens: A review. Avian Pathology, 51(3), 211-235.
2. Atwa, A. S., Gomaa, L., Elmenofy, W., Amer, H. M., & Ahmed, B. M. (2024). Expression of recombinant Florida clade 2 hemagglutinin in baculovirus expression system: A step for subunit vaccine development against H3N8 equine influenza virus. Open Veterinary Journal, 14(1), 350.
3. Bodle, J., Vandenberg, K., Laurie, K., Barr, I. G., Zhang, Y., & Rockman, S. (2023). An ELISA-based assay for determining haemagglutinin potency in egg, cell, or recombinant protein-derived influenza vaccines. Frontiers in Immunology, 14, 1147028.
4. Bullard, B. L., & Weaver, E. A. (2021). Strategies targeting hemagglutinin as a universal influenza vaccine. Vaccines, 9(3), 257.
5. Chen, J., Wang, J., Zhang, J., & Ly, H. (2021). Advances in the development and application of influenza vaccines. Frontiers in immunology, 12, 711997.
6. Deb Nath, N. (2021). Production of monoclonal antibody based on HA and NP protein of bat H18N11 influenza virus in mice
7. Gao, J., Wan, H., Li, X., Rakic Martinez, M., Klenow, L., Gao, Y., Ye, Z., & Daniels, R. (2021). Balancing the influenza neuraminidase and hemagglutinin responses by exchanging the vaccine virus backbone. PLoS Pathogens, 17(4), e1009171.
8. Gao, R., Wang, Z., Uprety, T., Sreenivasan, C. C., Sheng, Z., Hause, B. M., Brunick, C., Wu, H., Luke, T., & Bausch, C. L. (2023). A fully human monoclonal antibody possesses antibody‐dependent cellular cytotoxicity (ADCC) activity against the H1 subtype of influenza A virus by targeting a conserved epitope at the HA1 protomer interface. Journal of Medical Virology, 95(7), e28901.
9. Gromadzka, B., Chraniuk, M., Hovhannisyan, L., Uranowska, K., Szewczyk, B., Narajczyk, M., & Panasiuk, M. (2022). Characterization of the immune response towards the generation of universal anti-HA-stalk antibodies after immunization of broiler hens with triple H5N1/NA-HA-M1 VLPs. Viruses, 14(4), 730.
10. Keresztes, G., Baer, M., Alfenito, M. R., Verwoerd, T. C., Kovalchuk, A., Wiebe, M. G., Andersen, T. K., Saloheimo, M., Tchelet, R., & Kensinger, R. (2022). The highly productive thermothelomyces heterothallic C1 expression system is a host for the rapid development of influenza vaccines. Vaccines, 10(2), 148.
11. Kumar, R., Bera, B. C., Anand, T., Pavulraj, S., Kurian Mathew, M., Gupta, R., Tripathi, B. N., & Virmani, N. (2024). Evaluation of immunogenicity and protective efficacy of bacteriophage conjugated haemagglutinin based subunit vaccine against equine influenza virus in a murine model. Veterinary Research Communications, pp. 1–20.
12. Mashudu, N. (2019). Heterologous expression of equine influenza virus major surface glycoproteins and determination of their immunogenicity in animal models. University of Johannesburg (South Africa).
13. Narayan, C., Kwon, J., Kim, C., Kim, S.-J., & Jang, S. K. (2020). Virus-based SELEX (viro-SELEX) allows the development of aptamers targeting knotty proteins. Analyst, 145(4), 1473-1482.
14. Pushko, P., & Tretyakova, I. (2020). Influenza virus-like particles (VLPs): opportunities for H7N9 vaccine development. Viruses, 12(5), 518.
15. Ramirez, E. (2019). Generation and Characterization of Dual-Fluorescent Influenza Virus-Like Particles (VLPs) in Insect Cells University of Waterloo].
16. Rockman, S., Laurie, K., Ong, C., Rajaram, S., McGovern, I., Tran, V., & Youhanna, J. (2022). Cell-based manufacturing technology increases the antigenic match of the influenza vaccine and improves its effectiveness. Vaccines, 11(1), 52.
17. Sączyńska, V., Florys-Jankowska, K., Porębska, A., & Cecuda-Adamczewska, V. (2021). A novel epitope-blocking ELISA for specific and sensitive detection of antibodies against H5-subtype influenza virus hemagglutinin. Virology Journal, 18, 1-14.
18. Trombetta, C. M., Marchi, S., & Montomoli, E. (2022). The baculovirus expression vector system: A modern technology for future influenza vaccine manufacturing. Expert Review of Vaccines, 21(9), 1233-1242.
19. Tsai, C.-H., Wei, S.-C., Jan, J.-T., Liao, L.-L., Chang, C.-J., & Chao, Y.-C. (2019). Generation of Stable Influenza Virus Hemagglutinin through Structure-Guided Recombination. ACS Synthetic Biology, 8(11), 2472-2482.
20. Yu, L., Pan, J., Cao, G., Jiang, M., Zhang, Y., Zhu, M., Liang, Z., Zhang, X., Hu, X., & Xue, R. (2020). AIV poly antigen epitope expressed by recombinant baculovirus induces a systemic immune response in chicken and mouse models. Virology Journal, 17, 1-13.
21. Zhang, J., Ma, K., Li, B., Chen, Y., Qiu, Z., Xing, J., Huang, J., Hu, C., Huang, Y., & Li, H. (2021). A risk marker of tribasic hemagglutinin cleavage site in influenza A (H9N2) virus. Communications Biology, 4(1), 71.

Most read articles by the same author(s)

1 2 3 > >>