NATURAL ANTI-BACTERIAL COMPOUNDS AGAINST MDR (MULTIDRUG RESISTANCE) BACTERIA

Main Article Content

Javeria Arshad
Sara Naqvi
Aisha Sethi
Muhammad Hassan Butt
Anfas Muneeb
Maira Tahir
Nayab Zehra
Mahrukh
Ijaz Ali
Muhammad Hashir Naeem
Amir Jalal

Keywords

Multi drug Resistance, Conventional antibiotics, Bacterial infections, Normal flora

Abstract

Antibiotic resistance is one of the major concerns in healthcare department these days, because now
resistance is not limited to hospitals only. Resistance due to multidrug-resistant bacteria is responsible
for high mortality rate. Infections due to these type of bacteria is increasing day by day, while the
production of antibiotics is very slow as compared to the pace of production of the antibiotics. Usage
of antibiotics causes the elimination of normal flora that produces multi drug resistant bacteria
(MDR). Due to increase in antibiotic resistance, now the world is moving toward using natural
compounds to overcome all these issues. Because these methods are cost effective, eco-friendly and
have no side effects as observed in case of conventional antibiotics.

Abstract 232 | Pdf Downloads 39

References

1. Abdulrasheed, M., Ibrahim, I., Luka, A., Maryam, A., Hafsat, L., Ibrahim, S., . . . Gidado, M.
(2019). Antibacterial effect of Cinnamon (Cinnamomum zeylanicum) bark extract on different
bacterial isolates. Journal of Environmental Microbiology and Toxicology, 7(1), 16-20.
2. Abo-Shama, U. H., El-Gendy, H., Mousa, W. S., Hamouda, R. A., Yousuf, W. E., Hetta, H. F.,
& Abdeen, E. E. (2020). Synergistic and antagonistic effects of metal nanoparticles in
combination with antibiotics against some reference strains of pathogenic microorganisms.
Infection and Drug Resistance, 351-362.
3. Albaridi, N. A. (2019). Antibacterial potency of honey. International Journal of Microbiology,
2019.
4. Almasaudi, S. (2021). The antibacterial activities of honey. Saudi journal of biological sciences,
28(4), 2188-2196.
5. Bassetti, M., & Righi, E. (2013). Multidrug-resistant bacteria: what is the threat? Hematology
2013, the American Society of Hematology Education Program Book, 2013(1), 428-432.
6. Bhatwalkar, S. B., Mondal, R., Krishna, S. B. N., Adam, J. K., Govender, P., & Anupam, R.
(2021). Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Frontiers
in microbiology, 12, 613077.
7. Caruso, D. J., Palombo, E. A., Moulton, S. E., & Zaferanloo, B. (2022). Exploring the promise
of endophytic fungi: A review of novel antimicrobial compounds. Microorganisms, 10(10),
1990.
8. Cox, S., Mann, C., Markham, J., Bell, H. C., Gustafson, J., Warmington, J., & Wyllie, S. G.
(2000). The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree
oil). Journal of applied microbiology, 88(1), 170-175.
9. Devasahayam, G., Scheld, W. M., & Hoffman, P. S. (2010). Newer antibacterial drugs for a new
century. Expert opinion on investigational drugs, 19(2), 215-234.
10. El-Deeb, N. M., Abo-Eleneen, M. A., Al-Madboly, L. A., Sharaf, M. M., Othman, S. S., Ibrahim,
O. M., & Mubarak, M. S. (2020). Biogenically synthesized polysaccharides-capped silver
nanoparticles: immunomodulatory and antibacterial potentialities against resistant Pseudomonas
aeruginosa. Frontiers in Bioengineering and Biotechnology, 8, 643.
11. Erdin, D., & Wegmann, W. (1996). Lungenmetastase eines gutartigen Riesenzelltumors des
Skeletts 27 Jahre nach Resektion eines Tumorrezidivs. Der Pathologe, 17, 219-221.
12. Garba, I., Umar, A., Abdulrahman, A., Tijjani, M., Aliyu, M., Zango, U., & Muhammad, A.
(2013). Phytochemical and antibacterial properties of garlic extracts. Bayero Journal of Pure and
Applied Sciences, 6(2), 45-48.
13. Ibrahim, O., Sarhan, S., & Hameed, A. (2015). In vivo and in vitro antibacterial activities of
cranberry extract against E. coli O157: H7 in urinary tract infected rats. Adv. Anim. Vet. Sci, 3(4),
233-244.
14. Jackson, N., Czaplewski, L., & Piddock, L. J. (2018). Discovery and development of new
antibacterial drugs: learning from experience? Journal of Antimicrobial Chemotherapy, 73(6),
1452-1459.
15. Karnwal, A., & Malik, T. (2024). Exploring the untapped potential of naturally occurring
antimicrobial compounds: novel advancements in food preservation for enhanced safety and
sustainability. Frontiers in Sustainable Food Systems, 8, 1307210.
16. Kim, H. J., Jang, H. N., Bae, J. Y., Ha, J. H., & Park, S. N. (2014). Antimicrobial activity,
quantification and bactericidal activities of licorice active ingredients. Microbiology and
Biotechnology Letters, 42(4), 386-392.
17. Libonatti, C., Varela, S., & Basualdo, M. (2014). Antibacterial activity of honey: A review of
honey around the world. Journal of Microbiology and Antimicrobials, 6(3), 51-56.
18. Mandal, M. D., & Mandal, S. (2011). Honey: its medicinal property and antibacterial activity.
Asian Pacific journal of tropical biomedicine, 1(2), 154-160.
19. Marco Terreni, M. T., and Massimo Pregnolato. (2021). New antibiotics for multidrug resistant
bacterial strains.
20. Moghadam, F. J., Navidifar, T., & Amin, M. (2014). Antibacterial activity of garlic (Allium
sativum L.) on multi-drug resistant. Int J Enteric Pathog, 2(2), e16749.
21. Mohamed, A. E., Abdur, R., & MM, S. A. (2020). Cinnamon bark as antibacterial agent: A minireview. GSC Biological and Pharmaceutical Sciences, 10(1), 103-108.
22. Molan, P. C. (1992). The antibacterial activity of honey: 1. The nature of the antibacterial
activity. Bee world, 73(1), 5-28.
23. Moloney, M. G. (2016). Natural products as a source for novel antibiotics. Trends in
pharmacological sciences, 37(8), 689-701.
24. Mumu, S. K., & Hossain, M. M. (2018). Antimicrobial activity of tea tree oil against pathogenic
bacteria and comparison of its effectiveness with eucalyptus oil, lemongrass oil and conventional
antibiotics. American Journal of Microbiological Research, 6(3), 73-78.
25. Nitalikar, M. M., Munde, K. C., Dhore, B. V., & Shikalgar, S. N. (2010). Studies of antibacterial
activities of Glycyrrhiza glabra root extract. Int J Pharm Tech Res, 2(1), 899-901.
26. O’Shea, R., & Moser, H. E. (2008). Physicochemical properties of antibacterial compounds:
implications for drug discovery. Journal of medicinal chemistry, 51(10), 2871-2878.
27. Parisa, N., Islami, R. N., Amalia, E., Mariana, M., & Rasyid, R. S. P. (2019). Antibacterial
activity of cinnamon extract (Cinnamomum burmannii) against staphylococcus aureus and
escherichia coli in vitro. Bioscientia Medicina: Journal of Biomedicine and Translational
Research, 3(2), 19-28.
28. Phan, H. T., & Haes, A. J. (2019). What does nanoparticle stability mean? The Journal of
Physical Chemistry C, 123(27), 16495-16507.
29. Rayner, M. H., Sadler, P. J., & Scawen, M. D. (1990). NMR studies of a bacterial cell culture
medium (LB Broth): cyclic nucleosides in yeast extracts. FEMS microbiology letters, 68(1-2),
217-221.
30. Rodino, S., Butu, A., Butu, M., & Cornea, P. (2015). Comparative studies on antibacterial
activity of licorice, elderberry and dandelion. Digest Journal of Nanomaterials and
Biostructures, 10(3), 947-955.
31. Russell, A. (2002). Antibiotic and biocide resistance in bacteria: introduction. Journal of applied
microbiology, 92(s1), 1S-3S.
32. Sagdic, O., Aksoy, A., & Ozkan, G. (2006). Evaluation of the antibacterial and antioxidant
potentials of cranberry (gilaburu, Viburnum opulus L.) fruit extract. Acta Alimentaria, 35(4),
487-492.
33. Sánchez, M. C., Ribeiro-Vidal, H., Bartolomé, B., Figuero, E., Moreno-Arribas, M. V., Sanz,
M., & Herrera, D. (2020). New evidences of antibacterial effects of cranberry against periodontal
pathogens. Foods, 9(2), 246.
34. Selvan, D. A., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2018). Garlic, green tea and
turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidantand in vitro cytotoxicity studies. Journal of photochemistry and photobiology b: biology, 180,
243-252.
35. Tanaka, Y., Kikuzaki, H., Fukuda, S., & Nakatani, N. (2001). Antibacterial compounds of
licorice against upper airway respiratory tract pathogens. Journal of nutritional science and
vitaminology, 47(3), 270-273.
36. Teixeira, M., Sanchez-Lopez, E., Espina, M., Calpena, A., Silva, A. M., Veiga, F., . . . Souto, E.
B. (2018). Advances in antibiotic nanotherapy: Overcoming antimicrobial resistance. Emerging
Nanotechnologies in Immunology, 233-259.
37. Van Duin, D., & Paterson, D. L. (2016). Multidrug-resistant bacteria in the community: trends
and lessons learned. Infectious disease clinics, 30(2), 377-390.
38. Vivas, R., Barbosa, A. A. T., Dolabela, S. S., & Jain, S. (2019). Multidrug-resistant bacteria and
alternative methods to control them: an overview. Microbial Drug Resistance, 25(6), 890-908.
39. Wang, Z.-F., Liu, J., Yang, Y.-A., & Zhu, H.-L. (2020). A review: the anti-inflammatory,
anticancer and antibacterial properties of four kinds of licorice flavonoids isolated from licorice.
Current Medicinal Chemistry, 27(12), 1997-2011.
40. Wu, V. C.-H., Qiu, X., Bushway, A., & Harper, L. (2008). Antibacterial effects of American
cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT-Food Science
and Technology, 41(10), 1834-1841.
41. Yuan, Y.-G., Peng, Q.-L., & Gurunathan, S. (2017). Effects of silver nanoparticles on multiple
drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitisinfected goats: an alternative approach for antimicrobial therapy. International Journal of
Molecular Sciences, 18(3), 569.
42. Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. (2016). Antibacterial activity and mechanism
of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59,
282-289.

Most read articles by the same author(s)

1 2 > >>