PHAGE-ANTIBIOTIC SYNERGISM AGAINST PSEUDOMONAS AERUGINOSA ISOLATED FROM DIABETIC WOUNDS

Main Article Content

Sania Mubeen
Kaleem Ullah
Rimsha Kanwal
Saim Ahmad
Izza
Muhammad Usman Qaisar
Haiwad Gul
Hanfa Shahid
Usama Saleem
Saqib Ali
Rabia Kanwar
Muhammad Amir Aslam

Keywords

Antibiotic, bacteria, diabetes, phage, wound

Abstract

Diabetes mellitus is one of the most alarming diseases around the globe as well as in Pakistan.Diabetes is often associated with many other health complications among which few are notable,such as non-healing or delayed wounds. This is associated with the bacterial infection caused mostprominently by Pseudomonas aeruginosa which is a drug-resistant bacterial strain. In order to control or kill the bacterial strains, the synergism of antibiotics and bacteriophage is widely preferred as an effective strategy. It is believed that the combination ofantibiotics and phages is more effective than using individual drugs. Therefore, the current studywas aimed to investigate the synergistic impact of synergism of antibiotics and bacteriophages against P. aeruginosa isolates of diabetic patients. Samples were sourced from the wardrooms of Allied Hospital, Faisalabad. First, isolation and purification of P. aeruginosa was carried out. Then, the biochemical identification was performed. For bacteriophage isolation, samples were collected from sewage and were isolated using the double agar overlay method. Synergism was measured by using phages (1×106 PFU/ml) and different concentrations of antibiotics against P. aeruginosa. The results showed that the phage exhibited synergistic effects with both antibiotics.Upon conducting a comparison of optical density (OD) values; it was observed that the synergistic treatments exhibited a higher rate of bacterial killing. A higher rate of killing was observed in the phage and meropenem combination as compared to phage alone and ciprofloxacine and phage combination. PAS therapy therefore presents a new window and reinforces the view that it can act as an alternative treatment option for MDRP. aeroginosa infections in diabetic patients.

Abstract 256 | pdf Downloads 56

References

Abedon, S.T., S.J. Kuhl, B.G. Blasdel and E.M. Kutter. 2011. Phage treatment of human infections. Bacteriophage. 1:66-85.https://doi.org/10.4161/bact.1.2.15845
2. Alharbi, M.G., R.R. Al-Hindi, I.A. Alotibi, S.A. Azhari, R.M. Farsi and A.D. Teklemariam. 2023. Evaluation of phage—antibiotic combinations in the treatment of extended-spectrum β-lactamase-producing Salmonella enteritidis strain PT1. Heliyon. 9.https://doi.org/10.1016/j.heliyon.2023.e13077
3. Andrade, L., C. Chique, P. Hynds, J. Weatherill and J. O'dwyer. 2023. The antimicrobial resistance profiles of Escherichia coli and Pseudomonas aeruginosa isolated from private groundwater wells in the Republic of Ireland. Environmental Pollution. 317:120817.https://doi.org/10.1016/j.envpol.2022.120817
4. Banerjee, S., K. Batabyal, S. Joardar, D. Isore, S. Dey, I. Samanta, T. Samanta and S. Murmu. 2017. Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India. Veterinary world. 10:738. doi: 10.14202/vetworld.2017.738-742
5. Brüssow, H. 2005. Phage therapy: the Escherichia coli experience. Microbiology. 151:2133-2140.https://doi.org/10.1099/mic.0.27849-0
6. Chhibber, S., T. Kaur and S. Kaur. 2013. Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PloS one. 8:e56022.https://doi.org/10.1371/journal.pone.0056022
7. Debarbieux, L., D. Leduc, D. Maura, E. Morello, A. Criscuolo, O. Grossi, V. Balloy and L. Touqui. 2010. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. The Journal of infectious diseases. 201:1096-1104.https://doi.org/10.1086/651135
8. Dietl, B., I. Sánchez, P. Arcenillas, E. Cuchi, L. Gómez, F.G. De Molina, L. Boix-Palop, J. Nicolás and E. Calbo. 2018. Ceftolozane/tazobactam in the treatment of osteomyelitis and skin and soft-tissue infections due to extensively drug-resistant Pseudomonas aeruginosa: clinical and microbiological outcomes. International Journal of Antimicrobial Agents.51:498-502.https://doi.org/10.1016/j.ijantimicag.2017.11.003
9. Ertugrul, B., O. Oncul, N. Tulek, A. Willke, S. Sacar, O. Tunccan, E. Yilmaz, O. Kaya, B. Ozturk and O. Turhan. 2012. A prospective, multi-center study: factors related to the management of diabetic foot infections. European journal of clinical microbiology & infectious diseases. 31:2345-2352.https://doi.org/10.1007/s10096-012-1574-1
10. Fincke, B.G., D.R. Miller, C.L. Christiansen and R.S. Turpin. 2010. Variation in antibiotic treatment for diabetic patients with serious foot infections: a retrospective observational study. BMC Health Services Research. 10:1-10.https://doi.org/10.1186/1472-6963-10-193
11. Khan, I., Zaneb, H., Masood, S., Ashraf, S., Rehman, H. F., Tahir, S. K., and Shah, M. 2021. Supplementation of selenium nanoparticles-loaded chitosan improves production performance, intestinal morphology, and gut microflora in broiler chickens. The journal of poultry science 59(3), 272-281. https://doi.org/10.2141/jpsa.0210026.
12. Khan, I., Zaneb, H., Masood, S., Yousaf, M. S., Rehman, H. F., and Rehman, H. 2017. Effect of Moringa oleifera leaf powder supplementation on growth performance and intestinal morphology in broiler chickens. Journal of animal physiology and animal nutrition, 101,114-121. https://doi.org/10.1111/jpn.12634.
13. Jensen, K.C., B.B. Hair, T.M. Wienclaw, M.H. Murdock, J.B. Hatch, A.T. Trent, T.D. White, K.J. Haskell and B.K. Berges. 2015. Isolation and host range of bacteriophage with lytic activity against methicillin-resistant Staphylococcus aureus and potential use as a fomite decontaminant. PLoS One. 10:e0131714.https://doi.org/10.1371/journal.pone.0131714
14. Jo, A., T. Ding and J. Ahn. 2016. Synergistic antimicrobial activity of bacteriophages and antibiotics against Staphylococcus aureus. Food science and biotechnology. 25:935-940.https://doi.org/10.1007/s10068-016-0153-0.
15. Knezevic, P., S. Curcin, V. Aleksic, M. Petrusic and L. Vlaski. 2013. Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa. Research in microbiology. 164:55-60.https://doi.org/10.1016/j.resmic.2012.08.008
16. Kropinski, A.M., A. Mazzocco, T.E. Waddell, E. Lingohr and R.P. Johnson. 2009. Enumeration of bacteriophages by double agar overlay plaque assay. Bacteriophages: methods and protocols, volume 1: isolation, characterization, and interactions.69-76.https://doi.org/10.1007/978-1-60327-164-6_7
17. Lipsky, B., E. Peters, E. Senneville, A. Berendt, J. Embil, L. Lavery, V. Urbančič‐Rovan and W. Jeffcoate. 2012. Expert opinion on the management of infections in the diabetic foot. Diabetes/metabolism research and reviews. 28:163-178. https://doi.org/10.1002/dmrr.2248
18. Lutz, L., Pereira, D. C., Paiva, R. M., Zavascki, A. P., & Barth, A. L. (2012). Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm. BMC microbiology, 12, 1-7.doi:10.1186/1471-2180-12-196.
19. Nouraldin, A.a.M., M.M. Baddour, R.a.H. Harfoush and S.a.M. Essa. 2016. Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alexandria Journal of Medicine. 52:99–105-99–105.DOI: 10.1016/j.ajme.2015.05.002
20. Otta, S., Debata, N. K., & Swain, B. (2019). Bacteriological Profile of Diabetic Foot Ulcers. Chrismed: Journal of Health & Research, 6(1).
21. Olokoba, A.B., O.A. Obateru and L.B. Olokoba. 2012. Type 2 diabetes mellitus: a review of current trends. Oman medical journal. 27:269. doi: 10.5001/omj.2012.68
22. Pal, R.B., M. Rodrigues and S. Datta. 2010. Role of Pseudomonas in nosocomial infections and biological characterization of local strains. J Biosci Tech. 1:170-179.
23. Rahim, K., S. Saleha, A. Basit, X. Zhu, I. Ahmed, L. Huo, P. Zhang, B. Usman, S. Munir and O.L. Franco. 2017. Pseudomonas aeruginosa as a powerful biofilm producer and positive action of amikacin against isolates from chronic wounds. Jundishapur Journal of Microbiology. 10.https://doi.org/10.5812/jjm.57564
24. Shahi, S.K. and A. Kumar. 2016. Isolation and genetic analysis of multidrug resistant bacteria from diabetic foot ulcers. Frontiers in microbiology. 6:1464.https://doi.org/10.3389/fmicb.2015.01464
25. Shaw, J.E., R.A. Sicree and P.Z. Zimmet. 2010. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice. 87:4-14.https://doi.org/10.1016/j.diabres.2009.10.007.
26. Sun, H., P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B.B. Duncan, C. Stein, A. Basit, J.C. Chan and J.C. Mbanya. 2022. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice. 183:109119.https://doi.org/10.1016/j.diabres.2021.109119
27. Tacconelli, E., F. Sifakis, S. Harbarth, R. Schrijver, M. Van Mourik, A. Voss, M. Sharland, N.B. Rajendran, J. Rodríguez-Baño and J. Bielicki. 2018. Surveillance for control of antimicrobial resistance. The Lancet Infectious Diseases. 18:e99-e106.https://doi.org/10.1016/S1473-3099(17)30485-1
28. Tascini, C., G. Gemignani, F. Palumbo, A. Leonildi, A. Tedeschi, P. Lambelet, A. Lucarini, A. Piaggesi and F. Menichetti. 2006. Clinical and microbiological efficacy of colistin therapy alone or in combination as treatment for multidrug resistant Pseudomonas aeruginosa diabetic foot infections with or without osteomyelitis. Journal of chemotherapy. 18:648-651.https://doi.org/10.1179/joc.2006.18.6.648
29. Tenover, F.C. 2006. Mechanisms of antimicrobial resistance in bacteria. The American journal of medicine. 119:S3-S10.https://doi.org/10.1016/j.amjmed.2006.03.011
30. Uma, M.M. and D. Sudarsanam. 2012. Diabetes mellitus and recent advances. Research Journal Biotechnology. 7:72-79.
31. Ventola, C.L. 2015. The antibiotic resistance crisis: part 2: management strategies and new agents. Pharmacy and Therapeutics. 40:344.
32. Wolcott, R.D., K.P. Rumbaugh, G. James, G. Schultz, P. Phillips, Q. Yang, C. Watters, P.S. Stewart and S.E. Dowd. 2010. Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. Journal of wound care. 19:320-328.https://doi.org/10.12968/jowc.2010.19.8.77709
33. Yuan, Y., K. Qu, D. Tan, X. Li, L. Wang, C. Cong, Z. Xiu and Y. Xu. 2019. Isolation and characterization of a bacteriophage and its potential to disrupt multi-drug resistant Pseudomonas aeruginosa biofilms. Microbial pathogenesis. 128:329-336.https://doi.org/10.1016/j.micpath.2019.01.032
34. Zubair, M., M.J. Mughal and Q. Naqvi. 2010. The wave equation and general plane wave solutions in fractional space. Progress In Electromagnetics Research Letters. 19:137-146.doi:10.2528/PIERL10102103.

Most read articles by the same author(s)