GROWTH CURVE OF THE MICROALGAE Chlorella Vulgaris IN THREE MERCURY CONCENTRATIONS
Main Article Content
Keywords
Contamination, aquatic environment, mercury, microalgae
Abstract
Despite the existence of physicochemical decontamination methods, these have proved to be ineffective and costly, so biological treatments such as phytoremediation are currently gaining ground as they are low-cost and environmentally friendly. The aim of this work was to evaluate in vitro the growth capacity of the microalga Chlorella vulgaris for 25 days in the presence of Hg2+ and subsequently subjected to concentrations of 1.0, 2.0 and 3.0 mg/L of HgCl2. The results show the efficiency of the microalgal Chlorella vulgaris to grow with different behaviours in the three concentrations of mercury in the form of HgCl2. The data obtained indicate the ability of this microalga to remediate mercury in aquatic environments contaminated with this metal.
References
2. Barakat, M.A. (2011). New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4(4), 361–377.
3. Benítez, S., Pérez, A. & Vitola, D. (2018). Removal and recovery of mercury in vitro using immobilized live biomass of Chlorella sp. Indian Journal of Science and Technology, 11(45), 1-8. https://doi.org/10.17485/ijst/2018/v11i45/137575.
4. Chabukdhara, M., Kumar, S., & Gogoi, M. (2017). Phycoremediation of Heavy Metals Coupled with Generation of Bioenergy. Algal Biofuels. DOI 10.1007/978-3-319-51010-1_9.
5. de-Bashan, L.E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol. 101(6), 1611-1627.
6. El-Sheekh, M., Ghareib, M., & El-Souod, G. (2012). Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J. Bioremed. Biodegrad. 3, 1-9.
7. Gao, Q., Wong, Y.S., & Tam, N. (2011). Removal and biodegradation of nonylphenol by different Chlorella species. Mar. Pollut. Bull. 63, 445-451.
8. Hernández, Y., Pérez, A. & Vitola, D. (2018). Biosorption of mercury and nickel in vitro by microalga Chlorella sp. in solution and immobilized in dry fruit of squash (Luffa cylindrica). Indian Journal of Science and Technology, 11(41), 1-8 https://dx.doi.org/10.17485/ijst/2018/v11i41/131111.
9. Infante, C., Angulo, E., Zárate, A., Florez, J.Z., Barrios, F., & Zapata, C. (2012). Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Av. cien. ing. 3(2), 159-164.
10. Leung, W.C., Wong, M.F., Chua, H., Lo, W., & Leung, C.K. (2000). Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater. Water Sci. Technol. 41(12), 233-240.
11. Lim, S.L., Chu, W.L., & Phang, S.M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol. 101(19), 7314-7322.
12. Santaeufemia, S., Torres, E., Mera, R., & Abalde, J. (2016). Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. J. Hazard. Mater. 320, 315-325.
13. Sánchez, E., Garza, M., Almaguer, V., Sáenz, I., & Liñán, A. (2008). Estudio cinético e isotermas de adsorción de Ni (II) y Zn (II) utilizando biomasa del alga Chlorella sp. inmovilizada. Ciencia UNAL. 11(2), 168-176.
14. Vitola, D. Pérez, A., Montes, D. (2022). Utilización de microalgas como alternativa para la remoción de metales pesados. Revista de Investigación Agraria y Ambiental, 13(1), 195 – 203. DOI: https://doi.org/10.22490/21456453.4568
15. Wang, X., Chen, J., Yan, X., Wang, X., Zhang, J., Huang, J., & Zhao, J. (2015). Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasound-assisted citric acid. J. Ind. Eng. Chem. 27, 368-372.
16. Xiong, J. Q., Kurade, M. B., & Jeon, B. H. (2017). Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J. 313, 1251-1257.
17. Yao, L., Shi, J., & Miao, X. (2015). Mixed wastewater coupled with CO2 for microalgae culturing and nutrient removal. PLoS ONE. 10(9), 1-16.