ENDOPHYTIC BACTERIA ASSOCIATED WITH DICHANTIUM ARISTATUM BENTH WITH IN VITRO LEAD REMEDIATION CAPACITY IN LIVESTOCK FARM SOILS
Main Article Content
Keywords
Endophytic bacteria, pasture, livestock farm, heavy metal, remediation
Abstract
The present study consisted of isolating endophytic bacteria from roots associated with Dichanthium aristatum Benth from cattle farms in the municipality of Tolú, department of Sucre, Colombia. A total of 10 cattle farms were sampled, from which 10 soil samples with roots were taken per farm at a depth of 20 cm. Endophytic bacteria were isolated from each sample, isolates were separated, lead tolerance and siderophore production were evaluated. The multifactorial ANAVA between the variables density (CFU/g root) as a function of site showed highly significant differences. The results obtained indicate that 97% of the isolates found grew in the high Pb concentrations found in the soils of the cattle farms analysed. This preliminary study carried out in the Colombian Caribbean shows that the strain identified as C63RLIM showed the capacity to tolerate up to 500 mg/L of lead in the form of PbCl2 and to produce siderophore. In this study we found isolates of endophytic bacteria associated with Dichanthium aristatum Benth adapted to the soils of cattle farms with the presence of the metal Pb and with the capacity to tolerate in vitro up to 500 mg/L of PbCl2 and to produce siderophore.
References
2. Chien, C. C., Lin, B. C., & Wu, C. H. (2013). Biofilm formation and heavy metal resistance by an environmental Pseudomonas sp. Biochemical Engineering Journal, 78, 132–137. https://doi.org/10.1016/ j.bej.2013.01.014.
3. Dantu, S. 2009. Determinación de niveles de fondo y niveles de referencia de metales pesados y otros elementos traza en suelos de la Comunidad de Madrid, Serie Medio Ambiente. Environmental Monitoring and Assessment, 149, 213-222.
4. Fincheira-Robles, P., Martínez-Salgado, M., Ortega, R., Janssens M., & Parada-Ibañez, M. (2018). Soil quality indicators in table grape (Vitis vinifera cv. Thompson seedless) crops under integral nutrition management. Scientia Agropecuaria, 9(2), 17-24.
5. Jarosławiecka, A., & Piotrowska-Seget, Z. (2014). Lead resistance in micro-organisms. Microbiology (United Kingdom), 160, 12–25. https:// doi.org/10.1099/mic.0.070284-0.
6. Kang, C. H., Oh, S. J., Shin, Y., Han, S. H., Nam, I. H., & So, J. S. (2015). Bioremediation of lead by ureolytic Método Tolerancia al plomo de aislamientos nativos de Pseudomonas spp. bacteria isolated from soil at abandoned metal mines in South Korea. Ecological Engineering, 74, 402– 407. https://doi.org/10.1016/j.ecoleng.2014.10.009.
7. Luo, S., Chen, L., Chen, J., Xiao, X., Xu, T., Wan, Y., Rao, C., Liu, C., Liu, Y.T., Lai, C., & Zeng, G. (2011). Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere, 85(7), 1130-1138.
8. Ma L, Z. H.-G. (2019). Effects of metal-soil contact time on the extraction of mercury from soils. Bull Environ Contam Toxicol, 399-406. doi:https://doi.org/10.1007/s00128-015-1468-x
9. Marrero, J., Amores, S.I., & Coto, P.O. (2012). Fitorremediacion, una tecnología que involucra a plantas y microorganismos en el saneamiento ambiental. ICIDCA, 46(3), 52-61
10. Marrero, C.J., Díaz, V.A., & Coto, P.O. (2010). Mecanismos moleculares de resistencia a metales pesados en las bacterias y sus aplicaciones en la biorremediación. CENIC. Ciencias Biológicas, 41 (1), 67-78.
11. Martínez, A., Cruz, M., Veranes, O., Carballo, M. E., Salgado, I., Olivares, S., & Rodríguez, D. (2010). Resistencia a antibióticos ya metales pesados en bacterias aisladas del río Almendares. CENIC. Ciencias Biológicas, 41(4), 1-10
12. Naik, M. M., & Dubey, S. K. (2013). Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environmental Safety, 98, 1–7. https:// doi.org/10.1016/j.ecoenv.2013.09.039.
13. Oves, M., Saghir, M., & Qari, H. A. (2017). Ensifer adhaerens for heavy metal bioaccumulation, biosorption, and phosphate solubilization under metal stress condition. Journal of the Taiwan Institute of Chemical Engineers, 80, 540–552. https:// doi.org/10.1016/j.jtice.2017.08.026.
14. Pérez-Cordero, A., Tuberquia-Sierra, A., & Amell-Jímenez, D. (2014). Actividad in vitro de bacterias endófitas fijadoras de nitrógeno y solubilizadoras de fosfatos. Agronomía Mesoamericana, 25(2), 214-223.
15. Pérez C, Alexander; Peroza C, Víctor. 2013. Micorrizas arbusculares asociadas al pasto angleton (Dichathium aristatum Benth) en fincas ganaderas del municipio de Tolú, Sucre-Colombia. Revista MVZ Córdoba, 18(1):3362-3369.
16. Rajkumar, M., Noriharu, A. & Freitas, H. (2009). Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere, 77, 153-160.
17. Schnaas, M. de L. (1998). Plomo y nutrición. Cuadernos de Nutrición, 21(1), 9-12.
18. Sorkhoh, N.; Ali, N.; Dashti, N.; Al-Mailem, D.; Al-Awadhi, H.; Eliyas, M.; Radwan, S. 2010. Soil bacteria with the combined potential for oil utilization, nitrogen fixation and mercury resistance. Int. Biodeterior. Biodegr. 64:226-231.
19. Schwyny, B., & Neilands, J.B. (1987). Universal CAS assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47-56.
20. Sessitsch, A., Kuffner, M., Kidd, P., Vangronsveld, J., Wenzel, W., Fallmann, K., & Puschenreiter, M. (2013). The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol. Biochem, 60, 182-194.
21. Volke-Sepulveda, T., Velasco-Trejo, J. A., De la Rosa-Pérez, D. A. (2005). Suelos contaminados con metales y metaloides: muestreo y alternativas para su remediación (pp. 31-35) Ciudad de México, México: SEMARNAT-INEC.
22. Xu, X., Liao, W., Lin, Y., Dai, Y., Shi, Z., & Huo, X. (2018). Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an ewaste recycling area. Environmental Geochemistry and Health, 40(4), 1481–1494. https:// doi.org/10.1007/s10653-017-9997-3.