ISOLATION OF ENDOPHYTIC BACTERIA AS A BIOLOGICAL MODEL TO CONTRIBUTE TO HEAVY METAL PHYTOREMEDIATION

Main Article Content

Alexander Pérez Cordero
Donicer E. Montes Vergara
Yelitza Aguas Mendoza

Keywords

Endophytic bacteria, tolerance, heavy metals, growth promotion.

Abstract

The aim of this research was to encourage with different processes and schemes for the isolation, in vitro evaluation of the tolerance capacity to different concentrations of heavy metals and plant growth promoting activity. The results of research on endophytic bacteria isolated from different plant species in the Caribbean region of Colombia show the ability of the bacteria to tolerate different heavy metals such as mercury, lead, cadmium, nickel at different concentrations and the ability of these bacteria to fix nitrogen, solubilize phosphates and produce siderophores. The group of researchers have a genomic bank of endophytic bacteria that can be inoculated in plants for the improvement of plant species with the capacity to remediate and improve their nutritional conditions, adaptation and toxicity to environments contaminated with heavy metals

Abstract 97 | pdf Downloads 71

References

1. Adediran, G.A., Ngwenya, B.T., Mosselmans, J.F., Heal, K.V., Harvie, B.A., 2015. Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J. Hazard. Mater. 283, 490–499. https://doi.org/10.1016/j. jhazmat.2014.09.064
2. Ayubb T Nataly, Cerra G Armando, Chamorro A Leonardo, Pérez C Alexander. 2017. Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia. Rev Colombiana Cienc Anim 2017; 9(Supl 2):281-293. DOI: 10.24188/recia.v9.n2.2017.610.
3. Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A., Catalano, A., 2020. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 17 (11). https://doi.org/ 10.3390/ijerph17113782.
4. Liu, C., Lin, H., Dong, Y., Li, B., Wang, L., 2019. Identification and characterization of plant growth-promoting endophyte RE02 from Trifolium repens L. in mining smelter. Environ. Sci. Pollut. Res. Int. 26 (17), 17236–17247. https://doi.org/ 10.1007/s11356-019-04904-w.
5. Nagata, S., Yamaji, K., Nomura, N., Ishimoto, H., 2015. Root endophytes enhance stresstolerance of Cicuta virosa L. growing in a mining pond of eastern J apan. Plant Species Biology 30 (2), 116–125.
6. Ma, Y.; Prasad, M.; Rajkumar, M.; Freitas, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 29:248-258.
7. Oliveira, M.; Santos, T.; Vale, H.; Delvaux, J.; Cordero, P.; Ferreira, A.; Miguel, P.; Totola, M.; Costa, M.; Moraes, C.; Borges, A. 2013. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can. J. Microbiol. 59:221-30.
8. Pérez, A., Rojas, J., & Fuentes, J. (2010). Diversidad de bacterias endófitas asociadas a raíces del pasto colosuana (Bothriochloa pertusa) en tres localidades del departamento de Sucre, Colombia. Acta Biológica Colombiana, 15(2), 219-228.
http://www.scielo.org.co/scielo.php?script=sci_nlinks&pid=S0123-3475201900020003600028&lng=en.
9. Pérez Cordero, Alexander, Arroyo Canchila, Edin, & Chamorro Anaya, Leonardo. (2015a). Resistencia a níquel en bacterias endófitas aisladas a partir de Oriza sativa en Colombia. Revista de la Sociedad Venezolana de Microbiología, 35(1), 21-25. Recuperado en 13 de septiembre de 2023, de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-25562015000100005&lng=es&tlng=es
10. Pérez-Cordero Alexander, Barraza-Román Zafiro, Martínez-Pacheco Dalila. (2015b). Identificación de Bacterias Endófitas Resistentes a Plomo, Aisladas de Plantas de Arroz. Revista de Agronomía Mesoamericana, 26(2): 267-276.
https://www.redalyc.org/journal/437/43738993008/html/.
11. Pérez, A., Martínez, D., Barraza, Z., y Marrugo, J. (2016). Bacterias endófitas asociadas a los géneros Cyperus y Paspalum en suelos contaminados con mercurio. Revista U.D.C.A Actualidad & Divulgación Científica, 19(1), 67–76. https://doi.org/10.31910/rudca.v19.n1.2016.111.
12. Pérez-Cordero Alexander, Pérez- Espinosa Andrea, Vitola -Romero Deimer. 2018. Lead Resistance by Bacillus cereus 1DH1LIM Isolated from Contaminated Environments with Mercury. Indian Journal of Science and Technology, Vol 11(38), DOI: 10.17485/ijst/2018/v11i38/ 131974, October 2018.
13. Pérez-Cordero, A., Montes–Vergara, D., & Aguas–Mendoza, Y. (2022a). Siderophore Production By Bacillus Cereus Strain BN5 In Different Cadmium Concentrations. Webology (ISSN: 1735-188X), 19(5).
14. Pérez-Cordero, A., Montes–Vergara, D., & Aguas–Mendoza, Y. (2022b). Burkholderia Cepacia Kj935921 A Biological Alternative To Mitigate The Effect Of Cadmium In Tropical Pasture Soils. Webology (ISSN: 1735-188X), 19(5).
15. Pérez-Cordero, A., Montes–Vergara, D., & Aguas–Mendoza, Y. (2022c). In-Vitro Evaluation of Siderophore Production by Bacteria in The Presence of Heavy Metal. Webology (ISSN: 1735-188X), 19(5)
16. Pérez-Cordero, A., Montes-Vergara, D., & Aguas-Mendoza, Y. (2023a). Production of 1-aminocyclopropane-1-carboxylic acid deaminase (ACC) by Burkholderia cepacia as an indicator of cadmium contamination. Journal of Positive Psychology and Wellbeing, 942-949.
17. Pérez, A., Montes, D., & Aguas, Y. (2023b). Siderophore Production by Burkholderia Cepacea at Different Cadmium Concentrations. Journal of Positive School Psychology, 1383-1389.
18. Pérez, A., Montes, D., & Aguas, Y. (2023c). Endophytic Bacteria Tolerant To High Cadmium Concentrations. Journal of Positive School Psychology, 1390-1401.
19. Puri, A., Padda, K.P., Chanway, C.P., 2020. Can naturally-occurring endophytic nitrogenfixing bacteria of hybrid white spruce sustain boreal forest tree growth on extremely nutrient-poor soils? Soil Biol. Biochem. 140, 107642.
20. Rajkumar, M., Ae, N., Freitas, H., 2009. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77 (2), 153–160.
https://doi. org/10.1016/j.chemosphere.2009.06.047.
21. Rocha, J., Tacao, ˜ M., Fidalgo, C., Alves, A., Henriques, I., 2016. Diversity of endophytic Pseudomonas in Halimione portulacoides from metal(loid)-polluted salt marshes. Environ. Sci. Pollut. Res. Int. 23 (13), 13255–13267. https://doi.org/10.1007/ s11356-016-6483-x.
22. Roskova Z., R. Skarohlid, L. McGachy. 2022. Siderophores: an alternative bioremediation strategy? Sci. Total Environ. 819: 153144 https://doi.org/10.1016/j. scitotenv.2022.153144.
23. Ruan, D.S., Zeng, J.H., Chao, Y.Q., Qiu, R.L., Yang, Y.H., Wang, S.Z., 2016. Role of endophytes in plant tolerance to heavy metal stress. Microbiology China 43 (12), 2700–2706. https://doi.org/10.13344/j.microbiol.china.160051.
24. Sangsuwan, P., Prapagdee, B., 2021. Cadmium phytoremediation performance of two species of Chlorophytum and enhancing their potentials by cadmium-resistant bacteria. Environ. Technol. Innov. 21, 101311–101322. https://doi.org/10.1016/j. eti.2020.101311.
25. Sturz, A., Christie, B., Nowak, J., 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19 (1), 1–30.
26. Schalk J., M. Hannauer, A. Braud. 2021. New roles for bacterial siderophores in metal transport and tolerance, Environ. Microbiol. 13: 2844–2854, https:// doi.org/10.1111/j.1462-2920.2011.02556.x.
27. Tian, J., Liu, X.C., Liu, Z.L., Lai, D., Zhou, L., 2016. Larvicidal spirobisnaphthalenes from the endophytic fungus Berkleasmium sp. against Aedes albopictus. Pest Manag. Sci. 72 (5), 961–965. https://doi.org/10.1002/ps.4075.
28. Torres Pérez, Maria Paulina, Vitola Romero, Deimer, & Perez Cordero, Alexander. (2019). Biorremediación de mercurio y níquel por bacterias endófitas de macrófitas acuáticas. Revista Colombiana de Biotecnología, 21(2): 36-44. Epub January 10, 2020.
https://doi.org/10.15446/rev.colomb.biote.v21n2.79975.
29. Wang, X., Fang, L., Beiyuan, J., Cui, Y., Peng, Q., Zhu, S., Zhang, X., 2021. Improvement of alfalfa resistance against cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in cd-contaminated soil. Environ. Pollut. 277, 116758
https:// doi.org/10.1016/j.envpol.2021.116758.