Assessment Of Microbial Modulation Of Chemical Constituents In Enamel
Main Article Content
Keywords
Dental Enamel, Caries, Hydroxyapatite, scanning electron microscope, chemical changing, electron mapping
Abstract
Introduction: Dental enamel is a principal component of the tooth. It has evolved to bear large chewing forces and it can withstand over decades. Functional loss of enamel caused by tooth decay affects the quality of life. Enamel caries are characterized by the demineralization of inorganic and the destruction of organic substances.
Materials and methods: FESEM was used to visualize the tooth sections on the glass coverslip. Sections will be dehydrated and nitrogen gas was applied for drying. Further, energy-dispersive X-ray spectroscopy was used for elemental analyses and chemical characterization.
Results: In enamel calcium and phosphate were more but the other ions were also present and it got increased more than calcium and phosphate in areas where demineralization happened. Enamel restoration is more challenging than any other part of the tooth.
Conclusion: Demineralisation means loss of calcium and phosphate and increase in organic content like carbon and oxygen when this happens the hardness of the tissue will decrease.
References
2. Hicks, J., Garcia-Godoy, F., & Flaitz, C. (2004). Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2). The Journal of clinical pediatric dentistry, 28(2), 119–124. https://doi.org/10.17796/jcpd.28.2.617404w302446411
3. Sa, Y., Liang, S., Ma, X., Lu, S., Wang, Z., Jiang, T., & Wang, Y. (2014). Compositional, structural
and mechanical comparisons of normal enamel and hypomaturation enamel. Acta biomaterialia, 10(12), 5169–5177.https://doi.org/10.1016/j.actbio.2014.08.023
4. Selwitz, R. H., Ismail, A. I., & Pitts, N. B. (2007). Dental caries. Lancet (London, England), 369(9555), 51–59. https://doi.org/10.1016/S0140-6736(07)60031-2
5. Nóbrega, M., Dantas, E., Alonso, R., Almeida, L., Puppin-Rontani, R. M., & Sousa, F. B. (2020). Hydrolytic degradation of different infiltrant compositions within different histological zones of enamel caries like-lesions. Dental materials journal, 39(3), 449–455. https://doi.org/10.4012/dmj.2019-10
6. Brudevold F., Mccann H.G., Gron P. (2009). Caries Resistance as Related to the Chemistry of the Enamel. https://doi.org/10.1002/9780470719398.ch6
7. DeRocher, K. A., Smeets, P., Goodge, B. H., Zachman, M. J., Balachandran, P. V., Stegbauer, L., Cohen, M. J., Gordon, L. M., Rondinelli, J. M., Kourkoutis, L. F., & Joester, D. (2020). Chemical gradients in human enamel crystallites. Nature, 583(7814), 66–71. https://doi.org/10.1038/s41586-020-2433
8. Machoy, M., Seeliger, J., Lipski, M., Wójcicka, A., Gedrange, T., & Woźniak, K. (2016). SEM-EDS-Based Elemental Identification on the Enamel Surface after the Completion of Orthodontic Treatment: In Vitro Studies. BioMed research international, 2016, 7280535. https://doi.org/10.1155/2016/7280535
9. Arends, J., & Christoffersen, J. (1986). The nature of early caries lesions in enamel. Journal of dental research, 65(1), 2–11. https://doi.org/10.1177/00220345860650010201
10. Mann, A. B., & Dickinson, M. E. (2006). Nanomechanics, chemistry and structure at the enamel surface. Monographs in oral science, 19, 105–131. https://doi.org/10.1159/000090588
11. Eanes E. D. (1979). Enamel apatite: chemistry, structure and properties. Journal of dental research, 58(Spec Issue B), 829–836. https://doi.org/10.1177/00220345790580023501
12. Bowes, J. H., & Murray, M. M. (1935). The chemical composition of teeth: The composition of human enamel and dentine. The Biochemical journal, 29(12), 2721–2727. https://doi.org/10.1042/bj0292721
13. Toshiro Sakae (2006). Variations in Dental Enamel Crystallites and Micro-Structure. Journal of Oral Biosciences, 48(2), 85-93. https://doi.org/10.2330/joralbiosci.48.85
14. Moreno, E. C., & Zahradnik, R. T. (1974). Chemistry of enamel subsurface demineralization in vitro. Journal of dental research, 53(2), 226–235.
15. https://doi.org/10.1177/00220345740530020901 16. Tramini, P., Pélissier, B., Valcarcel, J., Bonnet, B., & Maury, L. (2000). A Raman spectroscopic investigation of dentin and enamel structures modified by lactic acid. Caries research, 34(3), 233–240. https://doi.org/10.1159/000016596
17. Susheela, A. K., & Bhatnagar, M. (1993). Fluoride toxicity: a biochemical and scanning electron microscopic study of enamel surface of rabbit teeth. Archives of toxicology, 67(8), 573–579. https://doi.org/10.1007/BF01969271
18. Licata, O., Guha, U., Poplawsky, J. D., Aich, N., & Mazumder, B. (2020). Probing Heterogeneity in Bovine Enamel Composition through Nanoscale Chemical Imaging using Atom Probe Tomography. Archives of oral biology, 112, 104682. https://doi.org/10.1016/j.archoralbio.2020.104682
19. Pessoa-Lima, C., Tostes-Figueiredo, J., Macedo-Ribeiro, N., Hsiou, A. S., Muniz, F. P., Maulin, J. A., Franceschini-Santos, V. H., de Sousa, F. B., Barbosa, F., Jr, Line, S. R. P., Gerlach, R. F., & Langer, M. C. (2022). Structure and Chemical Composition of ca. 10-Million-Year-Old (Late Miocene of Western Amazon) and Present-Day Teeth of Related Species. Biology, 11(11), 1636. https://doi.org/10.3390/biology11111636
20. Bossù, M., Saccucci, M., Salucci, A., Di Giorgio, G., Bruni, E., Uccelletti, D., Sarto, M. S., Familiari, G., Relucenti, M., & Polimeni, A. (2019). Enamel remineralization and repair results of Biomimetic Hydroxyapatite toothpaste on deciduous teeth: an effective option to fluoride toothpaste. Journal of nanobiotechnology, 17(1), 17. https://doi.org/10.1186/s12951-019-0454-6
21. Arends, J., & Christoffersen, J. (1986). The nature of early caries lesions in enamel. Journal of Dental Research, 65(1), 2–11.
22. Bossù, M., Saccucci, M., Salucci, A., Di Giorgio, G., Bruni, E., Uccelletti, D., Sarto, M. S., Familiari, G., Relucenti, M., & Polimeni, A. (2019). Enamel remineralization and repair results of Biomimetic Hydroxyapatite toothpaste on deciduous teeth: an effective option to fluoride toothpaste. Journal of Nanobiotechnology, 17(1), 17.
23. Bowes, J. H., & Murray, M. M. (1935). The chemical composition of teeth: The composition of human enamel and dentine. Biochemical Journal, 29(12), 2721–2727.
24. Brudevold, F., Mccann, H. G., & Grøn, P. (2009). Caries Resistance as Related to the Chemistry of the Enamel. In Novartis Foundation Symposia (pp. 121–148). https://doi.org/10.1002/9780470719398.ch6
25. DeRocher, K. A., Smeets, P. J. M., Goodge, B. H., Zachman, M. J., Balachandran, P. V., Stegbauer, L., Cohen, M. J., Gordon, L. M., Rondinelli, J. M., Kourkoutis, L. F., & Joester, D. (2020). Publisher Correction: Chemical gradients
in human enamel crystallites. Nature, 584(7819), E3.
26. Eanes, E. D. (1979). Enamel apatite: chemistry, structure and properties. Journal of Dental Research, 58(Spec Issue B), 829–836.
27. Felicita, A. S., Chandrasekar, S., & Shanthasundari, K. K. (2012). Determination of craniofacial relation among the subethnic Indian population: a modified approach - (Sagittal relation). Indian Journal of Dental Research: Official Publication of Indian Society for Dental Research, 23(3), 305–312.
28. Hicks, J., Garcia-Godoy, F., & Flaitz, C. (2005). Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2). In Journal of Clinical Pediatric Dentistry(Vol. 28, Issue 2, pp. 119–124). https://doi.org/10.17796/jcpd.28.2.617404w302446411
29. Lakshmi, T., Krishnan, V., Rajendran, R., & Madhusudhanan, N. (2015). Azadirachta indica: A herbal panacea in dentistry - An update. Pharmacognosy Reviews, 9(17), 41–44.
30. Licata, O., Guha, U., Poplawsky, J. D., Aich, N., & Mazumder, B. (2020). Probing Heterogeneity in Bovine Enamel Composition through Nanoscale Chemical Imaging using Atom Probe Tomography. Archives of Oral Biology, 112, 104682.
31. Machoy, M., Seeliger, J., Lipski, M., Wójcicka, A., Gedrange, T., & Woźniak, K. (2016). SEM-EDS-Based Elemental Identification on the Enamel Surface after the Completion of Orthodontic Treatment: Studies. BioMed Research International, 2016, 7280535.
32. Mann, A. B., & Dickinson, M. E. (2006). Nanomechanics, chemistry and structure at the enamel surface. Monographs in Oral Science, 19, 105–131.
33. Menon, A., & Thenmozhi, M. S. (2016). Correlation between thyroid function and obesity. Journal of Advanced Pharmaceutical Technology & Research, 9(10), 1568.
34. Moreno, E. C., & Zahradnik, R. T. (1974). Chemistry of enamel subsurface demineralization in vitro. Journal of Dental Research, 53(2), 226–235.
35. Nóbrega, M. T. C., Dantas, E. L. de A., Alonso, R. C. B., Almeida, L. de F. D. de, Puppin-Rontani, R. M., & Sousa, F. B. D. E. (2020). Hydrolytic degradation of different infiltrant compositions within different histological zones of enamel caries like-lesions. Dental Materials Journal, 39(3), 449–455.
36. Pessoa-Lima, C., Tostes-Figueiredo, J., Macedo-Ribeiro, N., Hsiou, A. S., Muniz, F. P., Maulin, J. A., Franceschini-Santos, V. H., de Sousa, F. B., Barbosa, F., Jr, Line, S. R. P., Gerlach, R. F., & Langer, M. C. (2022). Structure and Chemical Composition of ca. 10-Million-Year-Old (Late Miocene of Western Amazon) and Present-Day Teeth of Related Species. Biology, 11(11). https://doi.org/10.3390/biology11111636
37. Rajeshkumar, S., Menon, S., Venkat Kumar, S., Tambuwala, M. M., Bakshi, H. A., Mehta, M., Satija, S., Gupta, G., Chellappan, D. K., Thangavelu, L., & Dua, K. (2019). Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. Journal of Photochemistry and Photobiology. B, Biology, 197, 111531.
38. Robinson, C., Kirkham, J., Brookes, S. J., Bonass, W. A., & Shore, R. C. (1995). The chemistry of enamel development. The International Journal of Developmental Biology, 39(1), 145–152.
39. Sahu, D., Kannan, G. M., & Vijayaraghavan, R. (2014). Size-dependent effect of zinc oxide on toxicity and inflammatory potential of human monocytes. Journal of Toxicology and Environmental Health. Part A, 77(4), 177–191.
40. Sakae, T. (2006). Variations in Dental Enamel Crystallites and Micro-Structure. In Journal of Oral Biosciences (Vol. 48, Issue 2, pp. 85–93). https://doi.org/10.1016/s1349-0079(06)80021-6
41. Saravanan, A., Senthil Kumar, P., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P. R., & Reshma, B. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595.
42. Sathivel, A., Raghavendran, H. R. B., Srinivasan, P., & Devaki, T. (2008). Anti-peroxidative and anti-hyperlipidemic nature of Ulva lactuca crude polysaccharide on D-galactosamine induced hepatitis in rats. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 46(10), 3262–3267.
43. Sa, Y., Liang, S., Ma, X., Lu, S., Wang, Z., Jiang, T., & Wang, Y. (2014). Compositional, structural and mechanical comparisons of normal enamel and hypomaturation enamel. Acta Biomaterialia, 10(12), 5169–5177.
44. Sekar, D., Lakshmanan, G., Mani, P., & Biruntha, M. (2019). Methylation-dependent circulating microRNA 510 in preeclampsia patients. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 42(10), 1647–1648.
45. Selwitz, R. H., Ismail, A. I., & Pitts, N. B. (2007). Dental caries. The Lancet, 369(9555), 51–59.
46. Susheela, A. K., & Bhatnagar, M. (1993). Fluoride toxicity: A biochemical and scanning electron microscopic study of enamel surface of rabbit teeth. In Archives of Toxicology (Vol. 67, Issue 8, pp. 573–579). https://doi.org/10.1007/bf01969271
47. Thejeswar, E. P., & Thenmozhi, M. S. (2015). Educational research-iPad system vs textbook system. Journal of Advanced Pharmaceutical Technology & Research, 8(8), 1158.
48. Tramini, P., Pélissier, B., Valcarcel, J., Bonnet, B., & Maury, L. (2000). A Raman spectroscopic investigation of dentin and enamel structures modified by lactic acid. Caries Research, 34(3), 233–240.
49. Wang, Y., Zhang, Y., Guo, Y., Lu, J., Veeraraghavan, V. P., Mohan, S. K., Wang, C., & Yu, X. (2019). Synthesis of Zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). Journal of Photochemistry and Photobiology. B, Biology, 201, 111624.