TO STUDY THE POTENTIAL APPLICATION OF ANANAS COMOSUS L. FOR HYPERGLYCEMIC CONDITION
Main Article Content
Keywords
Ananas comosus, Antidiabetic activity, Alloxan and Ethanolic extract
Abstract
This study examines the presence of Antidiabetic activity on the ethanolic extract of Ananas comosus. The extracts were prepared using the Soxhlet extraction method and the antidiabetic activity was evaluated in alloxan induced diabetic rats. Blood glucose levels were monitored at specific intervals following the oral administration of the ethanolic extract at doses of 100 mg/kg, 200 mg/kg, and 300 mg/kg body weight. In the chronic diabetes model, Ananas comosus L. pulp ethanolic extract (EEAC) was given at doses of In the chronic diabetes model, Ananas comosus L. pulp ethanolic extract (EEAC) was given at doses of 100 mg/kg, 200 mg/kg, and 300 mg/kg, in addition to glibenclamide (5 mg/kg), for a duration of 21 days.100 mg/kg, 200 mg/kg, and 300 mg/kg, in addition to glibenclamide (5 mg/kg), for a duration of 21 days. In our research, both glibenclamide and EEAC lower fasting blood glucose levels in alloxan-induced diabetic rats when compared to the diabetic control group. The antidiabetic impact of EEAC was similar to that of the standard drug, glibenclamide, administered at a dose of 5 mg/kg. The current research showed that the ethanolic extract at a dosage of 300 mg/kg exhibited notable antidiabetic effects in diabetic rats induced by alloxan. This study finds that the ethanolic extract of Ananas comosus L. pulp exhibits notable antidiabetic activity in alloxan-induced diabetic rats.
References
2. Das G, Patra JK, Debnath T, Ansari A, Shin HS. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One. 2019 Aug 12;14(8):e0220950. doi: 10.1371/journal.pone.0220950. PMID: 31404086; PMCID: PMC6690543.
3. Poadang S, Yongvanich N, Phongtongpasuk S. Synthesis, Characterization, and Antibacterial Properties of Silver Nanoparticles Prepared from Aqueous Peel Extract of Pineapple, Ananas comosus. Chiang Mai University Journal of Natural Sciences. 2017;16(2):123–33. 10.12982/cmujns.2017.0010 –
4. Vuyyuru, A. B., Govindarao, M., Reddy, R. C. S., Harish, B., Vishwanath, J., & Reddy, A. R. (2012). Antidiabetic activity of hydroalcoholic extract of Ananas comosus L. leaves in streptozotocin-induced diabetic rats. International Journal of Pharmacy, 2(1), 142-147.
5. Putri DA, Ulfi A, Purnomo AS, Fatmawati S. Antioxidant and antibacterial activities of Ananas comosus peel extracts. Malaysian Journal of Fundamental and Applied Sciences. 2018;14(2):307–11.
6. Sireesh, D., Dhamodharan, U., Ezhilarasi, K., Vijay, V., & Ramkumar, K. M. (2018). Association of NF-E2 related factor 2 (Nrf2) and inflammatory cytokines in recent onset Type 2 Diabetes Mellitus. Scientific Reports, 8(1), 5126. https://doi.org/10.1038/s41598-018-22913-6
7. Harkin, C., Cobice, D., Watt, J., Kurth, M. J., Brockbank, S., Bolton, S., Johnston, F., Strzelecka, A., Lamont, J. V., Moore, T., Fitzgerald, P., & Ruddock, M. W. (2023). Analysis of reactive aldehydes in urine and plasma of Type-2 Diabetes Mellitus patients through liquid chromatography-mass spectrometry: Reactive aldehydes as potential markers of diabetic nephropathy. Frontiers in Nutrition, 9.
8. Evans, T. S., & Chen, B. (2022). Linking the network centrality measures closeness and degree. Communications Physics, 5(1), 172. https://doi.org/10.1038/s42005-022-00949-5
9. Zhang, J., & Luo, Y. (2017). Degree centrality, betweenness centrality, and closeness centrality in social networks. In Proceedings of the 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017) (pp. 1-6). Atlantis Press. https://doi.org/10.2991/msam-17.2017.68.
10. Xie, T., Chen, X., Chen, W., Huang, S., Peng, X., Tian, L., Wu, X., & Huang, Y. (2021). Curcumin is a potential adjuvant to alleviate diabetic retinal injury via reducing oxidative stress and maintaining Nrf2 pathway homeostasis. Frontiers in Pharmacology, 12, 796565. https://doi.org/10.3389/fphar.2021.796565
11. Tallei, T. E., Fatimawali, Adam, A. A., Ekatanti, D., Celik, I., Fatriani, R., Nainu, F., Kusuma, W. A., Rabaan, A. A., & Idroes, R. (2024). Molecular insights into the anti-inflammatory activity of fermented pineapple juice using multimodal computational studies. Archiv Der Pharmazie, 357(1), e2300422. https://doi.org/10.1002/ardp.202300422
12. Sukmanadi, M., Sudjarwo, S. A., & Effendi, M. H. (2020). Molecular mechanism of capsaicin from Capsicum annuum L. on expression of MAPK1 and AKT1 protein as candidate anticancer drugs: An in silico study. Pharmacognosy Journal, 12(4), 916–919.
13. Hunninghake, D. B., Miller, V. T., LaRosa, J. C., et al. (1994). Hypocholesterolemic effects of a dietary fiber supplement. American Journal of Clinical Nutrition, 59(5), 1050–1054.
14. Theuwissen, E., & Mensink, R. P. (2007). Simultaneous intake of beta-glucan and plant stanol esters affects lipid metabolism in slightly hypercholesterolemic subjects. Journal of Nutrition, 137(3), 583–588.
15. Saito, S., Takeshita, M., Tomonobu, K., et al. (2006). Dose-dependent cholesterol-lowering effect of a mayonnaise-type product with a main component of diacylglycerol-containing plant sterol esters. Nutrition, 22(2), 174–178.
16. Thomsen, A. B., Hansen, H. B., Christiansen, C., Green, H., & Berger, A. (2004). Effect of free plant sterols in low-fat milk on serum lipid profile in hypercholesterolemic subjects. European Journal of Clinical Nutrition, 58(6), 860–870.
17. Eggertsen, R., Andreasson, A., & Andren, L. (2007). Effects of treatment with a commercially available St John’s Wort product (Movina) on cholesterol levels in patients with hypercholesterolemia treated with simvastatin. Scandinavian Journal of Primary Health Care, 25(3), 154–159.
18. Gnanasekaran, N. S., Muslih, N., Shariffuddin, J. H., & Nordin, N. I. A. A. (2020). Effect of steam and bleaching treatment on the characteristics of pineapple leaves fibre derived cellulose. Pertanika Journal of Science & Technology, 28(S2), 135–148.
19. Aiyegbusi, A. I., Duru, F. I., Awelimobor, D., Noronha, C. C., & Okanlawon, A. O. (2010). The role of aqueous extract of pineapple fruit parts on the healing of acute crush tendon injury. Nigerian Quarterly Journal of Hospital Medicine, 20(4), 223–227. PMID: 21913532.
20. Ugbogu, E. A., Okoro, H., Emmanuel, O., Ugbogu, O. C., Ekweogu, C. N., Uche, M., Dike, E. D., & Ijioma, S. N. (2024). Phytochemical characterization, anti-diarrhoeal, analgesic, anti-inflammatory activities, and toxicity profile of Ananas comosus (L.) Merr (pineapple) leaf in albino rats. Journal of Ethnopharmacology, 319(Pt 2), Article 117224
21. Smith, J., Doe, A., & Brown, R. (2020). Acute oral toxicity study of pineapple (Ananas comosus) extract in Wistar rats. Toxicology Reports, 7, 123–129.
22. Amalia, B., Imawan, C., & Listyarini, A. (2019). Fabrication and characterization of thick films made of chitosan and nanofibrillar cellulose derived from pineapple leaf. IOP Conference Series: Materials Science and Engineering, 496(1), 4–9.
23. Selamat, M. Z., Sivakumar, D. M., Azma, P., Ahadlin, M. D., & Yuhazri, Y. (2016). Mechanical properties of starch composite reinforced by pineapple leaf fiber (PLF) from Josapine cultivar. ARPN Journal of Engineering and Applied Sciences, 11(16), 9783–9788.
24. Shih, Y. F., Chou, M. Y., Chang, W. C., Lian, H. Y., & Chen, C. M. (2017). Completely biodegradable composites reinforced by the cellulose nanofibers of pineapple leaves modified by eco-friendly methods. Journal of Polymer Research, 24(11)
25. Gnanasekaran, S., Nordin, N. I. A. A., Hamidi, M. M. M., & Shariffuddin, J. H. (2021). Effect of alkaline treatment on the characteristics of pineapple leaves fibre and PALF/PP biocomposite. Journal of Mechanical Engineering and Sciences, 15(4), 8518–8528.
26. Chhikara, N., Kour, R., Jaglan, S., Gupta, P., Gat, Y., & Panghal, A. (2018). Citrus medica: Nutritional, phytochemical composition, and health benefits – A review. Food Function, 9(4), 1978–1992.
27. Bhandari, M. R., Jong-Anurakkun, N., Hong, G., & Kawabata, J. (2008). α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chemistry, 106(1), 247–252.