STUDY OF EMBRYOTOXIC AND TERATOGENIC PROPERTIES OF MEDICINE No. 60 AND EVALUATION OF ITS EFFECT ON THE REPRODUCTIVE FUNCTION OF RATS

Main Article Content

Pletnev Vladimir Vladimirovich

Keywords

Embryotoxic and teratogenic properties, Medicine No. 60, Pletnev drops No. 60, Reproductive function, Complex medicinal product.

Abstract

Intramuscular administration of medicine No. 60 at a dose of 1.281 mg/kg (30 times the estimated highest daily dose for humans) when diluted with 1:5 saline solution to pregnant rats from day 1 to day 19 of pregnancy does not affect the indicators of pre- and post-implantation death of baby rats. The body weight of the rats exposed to the medicine No. 60 during the prenatal period of development did not differ from the indicators in the control group. The development of offspring in the experimental group during the entire observation period took place without deviation from the terms characteristic of the normal physiological development of animals of this species. As a result of the studies conducted, it was found that intramuscular administration of drug No. 60 at a dose of 1.281 mg/kg in a 1:10 dilution with saline solution, which was 30 times the estimated maximum daily therapeutic dose for humans, did not affect either the sexual activity of animals or reproductive indicators (number of live fetuses, body weight of embryos, their cranio-caudal size, number of yellow bodies, implantation sites, resorption), nor the neonatal development of baby rats. Thus, there was no effect of medicine No. 60 in the test dose of 1.281 mg/kg on the reproductive function of healthy mature rats and does not exhibit embryotoxic and teratogenic activity.

Abstract 542 | PDF Downloads 461 XML Downloads 206 HTML Downloads 176

References

1. Ahangarpour, A., Oroojan, A.A., Heidari, H., Ghaedi, E., Taherkhani, R. Effects of Hydro-alcoholic Extract from Arctium lappa L. (Burdock) Root on Gonadotropins, Testosterone, and Sperm Count and Viability in Male Mice with Nicotinamide / Streptozotocin-Induced Type 2 Diabetes. Malaysia J Med Sci., 2015. – Vol. 22 (2). – P. 25-32. [ pubmed.ncbi.nlm.nih.gov/26023292/]
2. Ahangarpour, A., Heidari, H., Oroojan, A.A., Mirzavandi, F., Nasr Esfehani, K., Dehghan Mohammadi Z. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root's hydro-alcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice. Avicenna J Phytomed, 2017. – Vol. 7(2). – P. 169-179. [pubmed.ncbi.nlm.nih.gov/28348972/]
3. Al-Ali Muneer. Tribulus terrestris: preliminary study of its diuretic and contractile effects and comparison with Zea mays. Journal of Ethnopharmacology, 2003. – Vol. 85. – P. 257-260. [pubmed.ncbi.nlm.nih.gov/12639749/]
4. Eman, A. Alam. Evaluation of antioxidant and antibacterial activities of Egyptian Maydis stigma (Zea mays hairs) rich in some. Journal of American Science, 2011. – Vol. 7(4). – P. 726-729. [academia.edu/3303585/Evaluation_of_antioxidant_and_antibacterial_activities _of_Egyptian_Maydis_stigma_Zea_mays_hairs_rich_in_some_bioactive_constituent]
5. Guskova, Т.А. Toxicology of medicines. – Moscow: Publishing house “Russian doctor”, 2003. – 154 p. [studmed.ru/guskova-t-a-toksikologiya-lekarstvennyh-sredstv_214475 a8589.html]
6. Jaripa Begum1, M Nazrul Islam Bhuiyan, Jasim Uddin Chowdhury, M Nuzmul Hoque, M Nural Anwar. Antimicrobial Activity of Essential Oil from Seeds of Carum carvi and Its Composition. Bangladesh J Microbiol, 2008. – Vol. 25. – P. 85-89. [semanticscholar.org/paper/ Antimicrobial-Activity-of-Essential-Oil-from-Seeds-Begum-Nazrul/844cc904b7e976272b240a9 ce 26bd6ef8998b2cb]
7. Johri, R.K. Cuminum cyminum and Carum carvi: an update. Pharmacogn Rev., 2011. – Vol. 5. – P. 63-72. [pubmed.ncbi.nlm.nih.gov/22096320/]
8. Kazemipoor, M., Hajifaraji, M., Haerian, B.S., Mosaddegh, M.H,, Cordell, G.A., et al. Antiobesity effect of caraway extract on overweight and obese women: a randomized, triple-blind, placebo-controlled clinical trial. Evidence-Based Complementary and Alternative Medicine, 2013. – P. 8. [pubmed.ncbi.nlm.nih.gov/24319489/]
9. Kazemipoor, M., Hamzah, S., Hajifaraji, M., Radzi, C.W., Cordell, G.A. Slimming and Appetite-Suppressing Effects of Caraway Aqueous Extract as a Natural Therapy in Physically Active Women. Phytother Res., 2016. – Vol. 30(6). – P. 981-987. [pubmed.ncbi.nlm.nih.gov /26988309/]
10. El-Kott, A.F., Bin-Meferij, M.M. Use of Arctium lappa Extract Against Acetaminophen-Induced Hepatotoxicity in Rats. Curr Ther Res Clin Exp., 2015. – Vol. 77. – P. 73-78. [pubmed.ncbi.nlm.nih.gov/26543508/]
11. Pereira, J.V., Bergamo, D.C.B., Pereira, J.O., França, S.C., Pietro, R.C.L.R., Silva-Souza, Y.T.C. Antimicrobial activity of Arctium lappa constituents against microorganisms commonly found in endodontic infection. Brazilian Dental Journal, 2005. – Vol. 16. – P. 192-196. [scielo.br/j/bdj/a/pFr4xSFSJm4TqBXxv9JBNrD/?lang=en]
12. Predes, F., Matta, S., Monteiro, J., Oliveira, T. Investigation of liver tissue and biochemical parameters of adult wistar rats treated with Arctium lappa L. Braz Arch Biol Technol., 2009. – Vol. 52(2). – P. 335-340. [researchgate.net/publication/247851543 _Investigation_of_liver_tissue_and_biochemical_parameters_of_adult_wistar_rats_treated_with_Arctium_lappa_L]
13. Predes, F.S., Ruis, A.L., Karvaliu, J.E., Foglio, M.A., Dolder, H. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement Altern Med., 2011. – Vol. 11. – P. 25. [pubmed.ncbi.nlm.nih.gov/21429215/]
14. Roy, S.D., Thakur, S., Negi, A., Kumari, M., Sutar, N., Jana, G.K. In vitro antibiotic activity of volatile oils of Carum carvi and Coriandrum sativum. Int J Chem Analyt Sci., 2010. – Vol. 1. – P. 149-150. [researchgate.net/publication/215661381_In_vitro_antibiotic_activity_ of_volatile_oils_of_Carum_carvi_Coriandrum_sativum]
15. Sadiq, S., Nagi, A.H., Shahzad, M., Zia, A. The renoprotective effect of aqueous extract of Carum carvi (black zeera) seeds in streptozotocin induced diabetic nephropathy in rodents. Saudi Journal of Kidney Diseases and Transplantation, 2010. – Vol. 21. – No. 6. – P. 1058-1065. [pubmed.ncbi.nlm.nih.gov/21060174/]
16. Saghir, M.R., Sadiq, S., Nayak, S., Tahir, M.U. Hypolipidemic effect of aqueous extract of Carum carvi (black zeera) seeds in diet induced hyperlipidemic rats. Pakistan Journal of Pharmaceutical Sciences, 2012. – Vol. 25. – No. 2. – P. 333-337. [pubmed.ncbi.nlm.nih.gov /22459457/]
17. Samojlik, N., et al. Antioxidant and hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and Caraway (Carum carvi L.) (Apiaceae). Journal of Agricultural and Food Chemistry, 2010. – Vol. 58. – No. 15. – P. 8848-8853. [pubmed.ncbi.nlm. nih.gov/20608729/]
18. Seidler-Lozykowska, K., Kedzia, B., Karpinska, E., Bocianowski, J. Microbiological activity of caraway (Carum carvi L.) essential oil obtained from different origin. Acta Scientiarum Maringa, 2013. – Vol. 35 (4). – P. 495-500. [researchgate.net/publication/ 257297909_Microbiological_activity_of_caraway_Carum_carvi_L_essential_oil_obtained_from_different_origin]
19. Skrinjar, M.M., Mandi, A.I., Misan, A.C., Sakac, M.B., Saric, L.C., Zec, M.M. Effect of mint (Mentha piperita L.) and Caraway (Carum carvi L.) on the growth of some toxicogenic Aspergillus species and aflatoxin B 1 production. Proc Nat Sci Matica Srpska Novi Sad., 2009. – Vol. 116. – P. 131-139. [researchgate.net/publication/47749232_Effect_of_mint_Mentha _piperita_L_and_caraway_Carum_carvi_L_on_the_growth_of_some_toxigenic_Aspergillus_species_and_aflatoxin_B1_production]
20. de Souza, A.O., Galetti, F.C.S., Silva, C.L., Bicalho, B., Parma, M.M., Fonseca, S,F. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Quim Nova, 2007. – Vol. 30(7). – P. 1563-1556. [researchgate.net/publication/244750914_Antimycobacterial _and_cytotoxicity_activity_of_synthetic_and_natural_compounds]
21. Suzuki, R., et al. Chemical Constituents of the Style of Zea mays L. with Glycation Inhibitory Activity / R. Suzuki, M. Iijima, Y. Okada // Chemical and Pharmaceutical Bulletin, 2007. – Vol. 55(1). – P. 153-155. [pubmed.ncbi.nlm.nih.gov/17202722/]
22. Tian, X., Sui, S., Huang, J., Bai, J.P., Ren, T.S., Zhао Q.C. Neuroprotective effects of Arctium lappa L. roots against glutamate-induced oxidative stress by inhibiting phosphorylation of p38, JNK and ERK 1/2 MAPKs in PC12 cells. Environ Toxicol Pharmacol., 2014. – Vol. 38 (1). – P. 189-198. [pubmed.ncbi.nlm.nih.gov/24956398/]
23. Tian, X., Guo, L.P., Hu, X.L., Huang, J., Fan, Y.H., Ren, T.S., Zhao, Q.C. Protective effects of Arctium lappa L. roots against hydrogen peroxide-induced cell injury and potential mechanisms in SH-SY5Y cells. Cell Mol Neurobiol., 2015. – Vol. 35 (3). – P. 335-344. [pubmed.ncbi.nlm.nih.gov/25352420/]
24. Wang, Z., Li, P., Wang, C., Jiang, Q., Zhang, L., Cao, Y., Zhong, W., Wang, C. Protective effects of Arctium lappa L. root extracts (AREs) on high fat diet induced quail atherosclerosis. BMC Complement Altern Med., 2016. – Vol. 16. – P. 6. [bmccomplementmedtherapies.biomedcentral.com/track/pdf/10.1186/s12906-016-0987-2.pdf]