SCENT AND DEFENSE: DUAL FUNCTION ENCAPSULATED OIL, A COMBINED NOVEL APPROACH FOR PERFUME AND MOSQUITO REPELLENT
Main Article Content
Keywords
Mosquito-borne diseases, Mosquito repellents, DEET, Essential oils, Natural oils, Volatile oils, Encapsulation technology, Controlled release, Aromatic properties, Insect repellency, Long-term efficacy, Consumer-friendly products, Dual-function products
Abstract
Mosquito-borne diseases, comprising malaria, dengue, chikungunya virus, and zika virus pose a significant threat to public health. To prevent the transmission of these illness, it is crucial to use effective mosquito repellents. Although traditional repellents, such as DEET, are widely employed, they are derived from chemical synthesis and can have detrimental effects on human health. As a result, there has been an increasing trend towards using natural extracts and oils, such as essential oils, as mosquito repellents. Essential oils are derived from natural sources and possess aromatic properties, bioactive effects and insect repellency. Integrating mosquito repellency into personal care products is a promising strategy for enhancing the use of these oils. However, essentials oils are volatile and tend to degrade, limiting their long-term efficacy. Encapsulation technology offers several advantages, such as increased stability and efficacy, controlled release of active ingredients, and prolonged repellent activity. Additionally, this technique preserves the aromatic properties of essential oils, making it a versatile approach for the development of consumer-friendly products that meet both aesthetic and protective requirements. This study explores a novel approach that combines the dual function of encapsulated essential oils, providing a promising solution for the development of personal care products that offer effective mosquito repellency.
References
2. Xuan, N. T. M., Nguyen, M. N. T., & Bui, C. V. (2023). Herbal essential oils as the alternative repellent against mosquitoes. Tạp chí Khoa học và Công nghệ-Đại học Đà Nẵng, 24-30.
3. Murtaza, M., Hussain, A. I., Kamal, G. M., Nazir, S., Chatha, S. A. S., Asmari, M., ... & Murtaza, S. (2023). Potential applications of microencapsulated essential oil components in mosquito repellent textile finishes. Coatings, 13(8), 1467. https://doi.org/10.3390/coatings13081467
4. Kalita, B., Bora, S., & Sharma, A. K. (2013). Plant essential oils as mosquito repellent: A review. International Journal of Research and Development in Pharmacy & Life Sciences, 3(1), 741-747.
5. Rihayat, T., Hasanah, U., Siregar, J. P., Jaafar, J., & Cionita, T. (2020, April). Geraniol quality improvement on citronella oil as raw material for making anti-bacterial perfumes. In IOP Conference Series: Materials Science and Engineering (Vol. 788, No. 1, p. 012028). IOP Publishing. https://doi.org/10.1088/1757-899X/788/1/012028
6. Salunke, M. R., Bandal, S. C., Choudhari, D., Gaikwad, T., & Dubey, M. (2022). Review of herbal mosquito repellent. International Journal of Scientific Development and Research (IJSDR), 7(3), 204-214.
7. Enascuta, C. E., Stepan, E., Oprescu, E. E., Radu, A., Alexandrescu, E., Stoica, R., ... & Niculescu, M. D. (2018). Microencapsulation of essential oils. Revista de Chimie, 69(7), 1612-1615.
8. Sharmeen, J. B., Mahomoodally, F. M., Zengin, G., & Maggi, F. (2021). Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules, 26(3), 666. https://doi.org/10.3390/molecules26030666
9. Harismah, K., Mirzaei, M., & Beser, N. (2023, June). Multi-purpose plants of essential oils in residential gardens. In Proceedings of the International Conference of Contemporary Affairs in Architecture and Urbanism-ICCAUA (Vol. 6, No. 1, pp. 1114-1122).
10. Wu, P., Tang, X., Jian, R., Li, J., Lin, M., Dai, H., ... & Hong, W. D. (2021). Chemical composition, antimicrobial, and insecticidal activities of essential oils of discarded perfume lemon and leaves (Citrus limon (L.) Burm. F.) as possible sources of functional botanical agents. Frontiers in Chemistry, 9, 679116. https://doi.org/10.3389/fchem.2021.679116
11. da Silva, M. R. M., & Ricci-Júnior, E. (2020). An approach to natural insect repellent formulations: From basic research to technological development. Acta Tropica, 212, 105419. https://doi.org/10.1016/j.actatropica.2020.105419
12. Ali, B., Al-Wabel, N. A., Shams, S., Ahamad, A., Khan, S. A., & Anwar, F. (2015). Essential oils used in aromatherapy: A systematic review. Asian Pacific Journal of Tropical Biomedicine, 5(8), 601-611.
13. Carvalho, I. T., Estevinho, B. N., & Santos, L. (2016). Application of microencapsulated essential oils in cosmetic and personal healthcare products: A review. International Journal of Cosmetic Science, 38(2), 109-119.
14. Mejía-Argueta, E. L., Santillán-Benítez, J. G., Flores-Merino, M. V., & Cervantes-Rebolledo, C. (2021). Herbal extracts and essential oils microencapsulation studies for different applications. Journal of Herbmed Pharmacology, 10(3), 289-295.
15. Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines, 4(3), 58. https://doi.org/10.3390/medicines4030058
16. Kongkaew, C., Sakunrag, I., Chaiyakunapruk, N., & Tawatsin, A. (2011). Effectiveness of citronella preparations in preventing mosquito bites: systematic review of controlled laboratory experimental studies. Tropical medicine & international health : TM & IH, 16(7), 802–810. https://doi.org/10.1111/j.1365-3156.2011.02781.x
17. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils—a review. Food and Chemical Toxicology, 46(2), 446–475. https://doi.org/10.1016/j.fct.2007.09.106
18. Hussain, H., Al-Harrasi, A., & Green, I. R. (2016). Frankincense (Boswellia) oils. In Essential oils in food preservation, flavor and safety (pp. 431–440). Elsevier.
19. Irshad, M., Subhani, M. A., Ali, S., & Hussain, A. (2020). Biological importance of essential oils. In Essential oils—Oils of nature (H. A. El-Shemy, Ed.). IntechOpen.
20. Vankar, P. S. (2004). Essential oils and fragrances from natural sources. Resonance, 9(1), 30–41.
21. Tripathi, A. K., Upadhyay, S., Bhuiyan, M., & Bhattacharya, P. R. (2009). A review on prospects of essential oils as biopesticides in insect-pest management. Journal of Pharmacognosy and Phytotherapy, 1(5), 52–63.
22. Alayo, M. A., Femi-Oyewo, M. N., Bakre, L. G., & Fashina, A. O. (2015). Larvicidal potential and mosquito repellent activity of Cassia minosoides extracts. Southeast Asian Journal of Tropical Medicine and Public Health, 46(4), 596–601.
23. Sanghong R, ...... (2015). Remarkable repellency of Ligusticum sinense (Umbelliferae), an herbal alternative against laboratory populations of Anopheles minimus and Aedes aegypti (Diptera: Culicidae). Malaria Journal, 14(1), 307.
24. Govindarajan, M., Rajeswary, M., Arivoli, S., Tennyson, S., & Benelli, G. (2016). Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: An eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitology Research, 115(5), 1807–1816.
25. Wu, H., Zhang, M., & Yang, Z. (2019). Repellent activity screening of 12 essential oils against Aedes albopictus Skuse: Repellent liquid preparation of Mentha arvensis and Litsea cubeba oils and bioassay on hand skin. Industrial Crops and Products, 128, 464–470.
26. Bell, J. W., Veltri, J. C., & Page, B. C. (2002). Human exposures to N,N-diethyl-m-toluamide insect repellents reported to the American Association of Poison Control Centers, 1993-1997. International Journal of Toxicology, 21(5), 341–352. https://doi.org/10.1080/10915810290096559
27. El Asbahani, A., Miladi, K., Badri, W., Sala, M., Ait Addi, E. H., Casabianca, H., El Mousadik, A., Hartmann, D., Jilale, A., Renaud, F. N. R., & Elaissari, A. (2015). Int. J. Pharm., 483, 220.
28. Radu, G. L., Nicolae, A., Hernandez, J. A. G., & San Martin, A. M. (2015). Rev. Chim. (Bucharest), 66(12), 1943.
29. Asadollahi, A., Khoobdel, M., Zahraei-Ramazani, A., Azarmi, S., & Mosawi, S. H. (2019). Effectiveness of plant-based repellents against different Anopheles species: A systematic review. Malaria Journal, 18(1), 1–20. https://doi.org/10.1186/s12936-019-3064-8
30. Pohlit, A. M., Lopes, N. P., Gama, R. A., Tadei, W. P., & Neto, V. F. (2011). Patent literature on mosquito repellent inventions which contain plant essential oils—a review. Planta Medica, 77(6), 598–617. https://doi.org/10.1055/s-0030-1270723
31. Brown, M., & Hebert, A. A. (1997). Insect repellents: An overview. Journal of the American Academy of Dermatology, 36(2 Pt 1), 243–249. https://doi.org/10.1016/S0190-9622(97)70289-5
32. Veltri, J. C., [Other authors], ... (1994). Retrospective analysis of calls to poison control centers resulting from exposure to the insect repellent N,N-diethyl-m-toluamide (DEET) from 1985-1989. Journal of Toxicology: Clinical Toxicology, 32(1), 1–16.
33. Lam, K. H., Cheng, S. Y., Lam, P. L., & [Other authors]. (2010). Microencapsulation: Past, present, and future. Minerva Biotecnologica, 22, 23–28.
34. Huang, H.-J., Yuan, W.-K., & Chen, X. D. (2008). Microencapsulation based on emulsification for producing pharmaceutical products: A literature review. Development in Chemical Engineering & Mineral Processing, 14, 515–544.
35. Fernandes, R., Marques, G., Borges, S., & Botrel, D. (2014). Effect of solids content and oil load on the microencapsulation process of rosemary essential oil. Industrial Crops and Products, 58, 173–181.
36. Sutaphanit, P., & Chitprasert, P. (2014). Optimization of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chemistry, 150, 313–320.
37. Cota-Arriola, O., Cortez-Rocha, M. O., Burgos-Hernández, A., Ezquerra-Brauer, J. M., & Plascencia-Jatomea, M. (2013). Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: Development of new strategies for microbial control in agriculture. Journal of the Science of Food and Agriculture, 93, 1525–1536.
38. Da Silva, P. T., Martins Fries, L. L., de Menezes, C. R., Holkem, A. T., Schwan, C. L., Wigmann, É. F., de Oliveira Bastos, J., & da Silva, C. d. B. (2014). Microencapsulation: Concepts, mechanisms, methods and some applications in food technology. Ciência Rural, 44(7), 1304–1311. https://doi.org/10.1590/0103-8478cr20130917
39. Lamprecht, A., & Bodmeier, R. (2012). Microencapsulation. In Ullmann’s Encyclopedia of Industrial Chemistry (pp. 157–171). Wiley-VCH.
40. Singh, M. N., Hemant, K. S. Y., Ram, M., & Shivakumar, H. G. (2010). Microencapsulation: A promising technique for controlled drug delivery. Research in Pharmaceutical Sciences, 5(1), 65–77.
41. Lazko, J., Popineau, Y., & Legrand, J. (2004). Soy glycinin microcapsules by simple coacervation method. Colloids and Surfaces B: Biointerfaces, 37(1), 1–8.
42. Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release – A review. International Journal of Food Science and Technology, 41(1), 1–21.
43. Santos, M. G., Carpinteiro, D. A., Thomazini, M., Rocha-Selmi, G. A., Cruz, A. G., Rodrigues, C. E. C., & Favaro-Trindade, C. S. (2014). Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Research International, 66, 454–462.
44. Ach, D., Briançon, S., Broze, G., Puel, F., Rivoire, A., Galvan, J., & Chevalier, Y. (2015). Formation of microcapsules by complex coacervation. Canadian Journal of Chemical Engineering, 93(1), 183–191.
45. Dong, Z., Ma, Y., Hayat, K., Jia, C., Xia, S., & Zhang, X. (2011). Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. Journal of Food Engineering, 104(3), 455–460.
46. Xiao, Z., Liu, W., Zhu, G., Zhou, R., & Niu, Y. (2014). A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. Journal of the Science of Food and Agriculture, 94(7), 1482–1494.
47. Lam, P. L., & Gambari, R. (2014). Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. Journal of Controlled Release, 178, 25–45.
48. Estevinho, B. N., Rocha, F., Santos, L., & Alves, A. (2013). Microencapsulation with chitosan by spray drying for industry applications – A review. Trends in Food Science & Technology, 31(2), 138–155.
49. https://images.app.goo.gl/vYzCEwuFC62yYZYv7
50. https://images.app.goo.gl/WqZqibDFmVsCgnraA
51. https://images.app.goo.gl/FDPe2rFWjz98NvjQ9
52. https://images.app.goo.gl/vMvHx74EjG5GVKgi6
53. https://images.app.goo.gl/bFvKTLwewgJHbJ9A6
54. https://images.app.goo.gl/rfy4WGAxDHG3ehb36
55. https://images.app.goo.gl/BomJeJnzYxPx72GJ9
56. https://images.app.goo.gl/M5xkhcTY8WHUnyjq5
57. https://images.app.goo.gl/3aCiDqonR9Xp23NVA