RETROSPECTIVE ANALYSIS OF ANTIBIOTIC RESISTANCE PATTERNS OF STAPHYLOCOCCUS AUREUS CLINICAL ISOLATES IN A TERTIARY CARE HOSPITAL
Main Article Content
Keywords
Staphylococcus aureus, MRSA, Antibiotic Resistance, Antimicrobial stewardship
Abstract
Introduction: Staphylococcus aureus is a common pathogen causing a wide range of infections, from mild skin conditions to severe diseases. The rise of antibiotic resistance, particularly methicillin-resistant Staphylococcus aureus (MRSA), has become a major public health concern. MRSA's resistance is mediated by the mecA gene, making it resistant to β-lactam antibiotics. The misuse of antibiotics, especially in countries like Pakistan, has exacerbated the problem, leading to an urgent need for enhanced surveillance and antimicrobial stewardship programs.
Objective: This study investigates the antibiotic resistance patterns of S. aureus isolates in a tertiary care hospital.
Methodology: This retrospective descriptive study analyzed Staphylococcus aureus isolates from clinical samples (respiratory specimens, body fluids, urine, HVS, and blood) collected at Jinnah Postgraduate Medical Centre (JPMC), Karachi, from January to December 2021. Antibiotic susceptibility profiles were evaluated using the Vitek 2 system and the disk diffusion method, following CLSI guidelines. Standard microbiological techniques, including culture on selective media and biochemical tests, were used for identification. Ethical approval was obtained from the Institutional Review Board of JPMC.
Result: A total of 13,470 specimens were analyzed, including 8,087 clinical and 5,383 blood specimens, with 9,604 (71.41%) negative and 3,806 (28.19%) positive. Staphylococcus aureus was identified in 955 (25.10%) of positive specimens, with 913 isolates from clinical samples and 42 from blood. Resistance was highest for cloxacillin (93%), erythromycin (85%), and ciprofloxacin (81%). Vancomycin had the lowest resistance at 2%. These findings highlight the importance of effective antimicrobial strategies to combat increasing resistance.
Conclusion: This study highlights the significant prevalence of Staphylococcus aureus and its concerning antibiotic resistance patterns in clinical and blood samples. Ongoing surveillance and prudent antimicrobial management are crucial to combat rising resistance. Future research should prioritize resistance monitoring and optimized treatment strategies to improve patient outcomes.
References
2. Ali, T., Basit, A., Karim, A. M., Lee, J.-H., Jeon, J.-H., Rehman, S. u., & Lee, S.-H. (2021). Mutation-based antibiotic resistance mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. Pharmaceuticals, 14(5), 420.
3. Boswihi, S. S., & Udo, E. E. (2018). Methicillin-resistant Staphylococcus aureus: An update on the epidemiology, treatment options and infection control. Current Medicine Research and Practice, 8(1), 18-24.
4. Brás, S. M. P. (2020). The adaptation of Staphylococcus epidermidis commensal and clinical isolates to human blood: the search for molecular diagnostics markers Universidade do Minho (Portugal)].
5. Campanille, D. F. R. M. (2019). New studies in the resistance to β-lactams and in cell wall damage survival in Staphylococcus aureus: an integrated approach Universidade NOVA de Lisboa].
6. Chandra, P., Mk, U., Ke, V., Mukhopadhyay, C., U, D. A., & V, R. (2021). Antimicrobial resistance and the post antibiotic era: better late than never effort. Expert opinion on drug safety, 20(11), 1375-1390.
7. Clegg, J., Soldaini, E., McLoughlin, R. M., Rittenhouse, S., Bagnoli, F., & Phogat, S. (2021). Staphylococcus aureus vaccine research and development: the past, present and future, including novel therapeutic strategies. Frontiers in immunology, 12, 705360.
8. Cong, Y., Yang, S., & Rao, X. (2020). Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. Journal of advanced research, 21, 169-176.
9. Dietvorst, J., Vilaplana, L., Uria, N., Marco, M.-P., & Muñoz-Berbel, X. (2020). Current and near-future technologies for antibiotic susceptibility testing and resistant bacteria detection. TrAC Trends in Analytical Chemistry, 127, 115891.
10. Gajdács, M. (2019). The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics, 8(2), 52.
11. Garcia Reeves, A. B. (2019). ANTIMICROBIAL STEWARDSHIP PROGRAMS: IMPLICATIONS FOR RESISTANCE RATES & QUALITY OF CARE IN HOSPITALS.
12. Heilbronner, S., & Foster, T. J. (2021). Staphylococcus lugdunensis: a skin commensal with invasive pathogenic potential. Clinical microbiology reviews, 34(2), 10.1128/cmr. 00205-00220.
13. Henderson, A., & Nimmo, G. R. (2018). Control of healthcare-and community-associated MRSA: recent progress and persisting challenges. British medical bulletin, 125(1), 25-41.
14. Jorge, P., Magalhães, A. P., Grainha, T., Alves, D., Sousa, A. M., Lopes, S. P., & Pereira, M. O. (2019). Antimicrobial resistance three ways: healthcare crisis, major concepts and the relevance of biofilms. FEMS microbiology ecology, 95(8), fiz115.
15. Kest, H., & Kaushik, A. (2019). Vancomycin-resistant Staphylococcus aureus: formidable threat or silence before the storm. J Infect Dis Epidemiol, 5(5), 93.
16. Lee, A. S., De Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature reviews Disease primers, 4(1), 1-23.
17. Liu, Y., Li, R., Xiao, X., & Wang, Z. (2019). Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria. Critical reviews in microbiology, 45(3), 301-314.
18. Majumder, M. A. A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M., & Gittens-St Hilaire, M. (2020). Antimicrobial stewardship: fighting antimicrobial resistance and protecting global public health. Infection and drug resistance, 4713-4738.
19. Naimi, H. M. (2021). Staphylococcus aureus: molecular characterization of afghan isolates and study of conjugative transfer of linezolid resistance Université de Lyon].
20. Pidwill, G. R., Gibson, J. F., Cole, J., Renshaw, S. A., & Foster, S. J. (2021). The role of macrophages in Staphylococcus aureus infection. Frontiers in immunology, 11, 620339.
21. Popovich, K. J., Davila, S., Chopra, V., Patel, P. K., Lassiter, S., Olmsted, R. N., & Calfee, D. P. (2019). A tiered approach for preventing methicillin-resistant Staphylococcus aureus infection. Annals of Internal Medicine, 171(7_Supplement), S59-S65.
22. Ramos, J. N., Souza, C., Faria, Y. V., da Silva, E. C., Veras, J. F. C., Baio, P. V. P., Seabra, S. H., de Oliveira Moreira, L., Hirata Júnior, R., & Mattos-Guaraldi, A. L. (2019). Bloodstream and catheter-related infections due to different clones of multidrug-resistant and biofilm producer Corynebacterium striatum. BMC infectious diseases, 19, 1-11.
23. Rihana, N., & Sampson, M. (2019). Skin Infections. Infections in Neutropenic Cancer Patients, 49-71.
24. Salamat, A. (2020). Investigating the efficacy of Mupirocin as a decolonisation agent in preventing methicillin-resistant Staphylococcus aureus (MRSA) healthcare related infections University of Southampton].
25. Sarmah, P., Dan, M. M., Adapa, D., & Sarangi, T. (2018). A review on common pathogenic microorganisms and their impact on human health. Electronic Journal of Biology, 14(1), 50-58.
26. Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., Holland, T. L., & Fowler Jr, V. G. (2019). Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology, 17(4), 203-218.
27. Vestergaard, M., Frees, D., & Ingmer, H. (2019). Antibiotic resistance and the MRSA problem. Microbiology spectrum, 7(2), 10.1128/microbiolspec. gpp1123-0057-2018.