PROTECTIVE EFFECTS OF MUSA PARADISIACA FRUIT EXTRACT AGAINST REPRODUCTIVE TOXICITY IN FEMALE RATS EXPOSED TO BISPHENOL A (BPA)
Main Article Content
Keywords
.
Abstract
Bisphenol A (BPA) is a prevalent endocrine-disrupting chemical that poses risks to female reproductive health. In this study, we substantiated the traditional claim of the efficacy of Musa paradisiaca (banana) fruit plus peel in treating female reproductive system disorders. we investigated the potential protective effects of M. paradisiaca (banana) fruit extract against BPA-induced reproductive toxicity in female rats. The hydroalcoholic extract of M. paradisiaca fruit was administered to female Wistar rats exposed to BPA. The animals were divided into different groups: control, BPA-exposed, and Musa paradisiaca extract pre-treated followed by BPA exposure. Serum hormonal levels, histopathological changes in ovarian tissues, and estrous cyclicity were assessed to evaluate the protective effects. Our results revealed that BPA exposure led to disruptions in reproductive parameters, including altered hormonal profiles and abnormal estrous cycles. However, pre-treatment with M. paradisiaca fruit extract mitigated these adverse effects, restoring hormonal balance and promoting more regular estrous cycles. Histopathological examination showed improvements in ovarian tissue architecture in the M. paradisiaca extract pre-treated group compared to the BPA-exposed group. Our study provides supporting evidence for the traditional use of M. paradisiaca fruit plus peel in treating female reproductive system disorders, further highlighting the potential of natural remedies for female reproductive health. These findings suggest that M. paradisiaca fruit extract may possess protective properties against BPA-induced reproductive toxicity in female rats. The observed effects may be attributed to the presence alkaloids, terpenes, and flavonoids (phenolic compounds) in the extract. Our findings are consistent with previous research indicating that these compounds possess potential anti-infertility effects due to their radical scavenging and antioxidant properties. warranting further investigation to understand the underlying mechanisms and explore its potential therapeutic applications for female reproductive health.
References
2. Pivonello, C., Muscogiuri, G., Nardone, A., Garifalos, F., Provvisiero, D. P., Verde, N., ... & Colao, A. (2020). Bisphenol A: An emerging threat to female fertility. Reproductive Biology and Endocrinology, 18, 22. doi: 10.1186/s12958-019-0558-8.
3. La Rocca, C., Tait, S., Guerranti, C., Busani, L., Ciardo, F., Bergamasco, B., ... & Lucente, C. (2014). Exposure to endocrine disrupters and nuclear receptor gene expression in infertile and fertile women from different Italian areas. International Journal of Environmental Research and Public Health, 11, 10146-10164. doi: 10.3390/ijerph111010146.
4. Tachibana, T., Wakimoto, Y., Nakamuta, N., Phichitraslip, T., Wakitani, S., Kusakabe, K., & Hondo, E. (2007). Effects of bisphenol A (BPA) on placentation and survival of the neonates in mice. Journal of Reproduction and Development, 53, 509-514. doi: 10.1262/jrd.18171.
5. Honma, S., Suzuki, A., Buchanan, D. L., Katsu, Y., Watanabe, H., & Iguchi, T. (2002). Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reproductive Toxicology, 16, 117-122. doi: 10.1016/S0890-6238(02)00006-0.
6. Lawson, C., Gieske, M., Murdoch, B., Ye, P., Li, Y., Hassold, T., & Hunt, P. A. (2011). Gene expression in the fetal mouse ovary is altered by exposure to low doses of bisphenol A. Biology of Reproduction, 84, 79-86. doi: 10.1095/biolreprod.110.084814.
7. Rodríguez, H. A., Santambrosio, N., Santamaría, C. G., Muñoz-de-Toro, M., & Luque, E. H. (2010). Neonatal exposure to bisphenol A reduces the pool of primordial follicles in the rat ovary. Reproductive Toxicology, 30, 550-557. doi: 10.1016/j.reprotox.2010.07.008.
8. Sugiura-Ogasawara, M., Ozaki, Y., Sonta, S., Makino, T., & Suzumori, K. (2005). Exposure to bisphenol A is associated with recurrent miscarriage. Human Reproduction, 20, 2325-2329. doi: 10.1093/humrep/deh888.
9. Mínguez-Alarcón, L., Gaskins, A. J., Chiu, Y. H., Williams, P. L., Ehrlich, S., Chavarro, J. E., ... & Hauser, R. (2015). Urinary bisphenol A concentrations and association with in vitro fertilization outcomes among women from a fertility clinic. Human Reproduction, 30, 2120-2128. doi: 10.1093/humrep/dev183.
10. Vahedi, M., Saeedi, A., Poorbaghi, S. L., Sepehrimanesh, M., & Fattahi, M. (2016). Metabolic and endocrine effects of bisphenol A exposure in market seller women with polycystic ovary syndrome. Environmental Science and Pollution Research International, 23, 23546-23550. doi: 10.1007/s11356-016-7573-5.
11. Shen, Y., Zheng, Y., Jiang, J., Liu, Y., Luo, X., Shen, Z., ... & Sun, Z. (2015). Higher urinary bisphenol A concentration is associated with unexplained recurrent miscarriage risk: Evidence from a case-control study in eastern China. PLoS ONE, 10(6), e0127886. doi: 10.1371/journal.pone.0127886.
12. Pereira, A., & Maraschin, M. Banana (Musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance
13. for human health. J. Ethnopharmacol. 160, 149-163 (2015). https://doi.org/10.1016/j.jep.2014.11.008
14. Arun, K. B., Thomas, S., Reshmitha, T. R., Akhil, G. C., & Nisha, P. Dietary fibre and phenolic-rich extracts from Musa paradisiaca inflorescence ameliorates type 2 diabetes and associated cardiovascular risks. J. Funct. Foods 31, 198-207 (2017). https://doi.org/10.1016/j.jff.2017.02.001.
15. Acharya, J., Karak, S., & De, B. Metabolite Profile and Bioactivity of Musa X Paradisiaca L. Flower Extracts. J. Food Biochem. 40(6), 724-730 (2016). https://doi.org/10.1111/jfbc.12263.
16. Chukwuma, Emmanuel; Soladoye, M.O; Sulaiman, O.M; Feyisola, R.T. (2014). Ethnobotanical Survey of Plants Used in the Traditional Treatment of Female Infertility in Southwestern Nigeria. Ethnobotany Research and Applications. 12, 081-090.
17. Do, Q.D., Angkawijaya, A.E., Tran-Nguyen, P.L., Huynh, L.H., Soetaredjo, F.E., Ismadji, S., Ju, Y.-H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal 22, 296-302. https://doi.org/10.1016/j.jfda.2013.11.001
18. Alamgeer, Chabert, P., Akhtar, M. S., Jabeen, Q., Delecolle, J., Heintz, D., Garo, E. and Oak, M. H. (2016). Endothelium-independent vasorelaxant effect of a Berberis orthobotrys root extract via inhibition of phosphodiesterases in the porcine coronary artery. Phytomedicine., 23(8): 793-799.
19. Mayasari, A., Suryawan, A., Christita, M., Simamora, A. T. J., Abinawanto, A., Suryanda, A., & Bowolaksono, A. (2018). Vaginal swab cytology aplication to determine the estrus cycle of lowland anoa (bubalus depressicornis, smith, 1927) in captivity. MATEC Web of Conferences, 197, 06008.
20. Akhila JS, Shyamjith D, Alwar M. Acute toxicity studies and determination of median lethal dose. Current science 2007:917
21. Nirmala, M., Girija, K., Lakshman, K., & Divya, T. (2012). Hepatoprotective activity of Musa paradisiaca on experimental animal models. Asian Pacific Journal of Tropical Biomedicine, 2(1), 11-15. doi: 10.1016/S2221-1691(11)60181-0. PMID: 23569826; PMCID: PMC3609216.
22. Atanasov, A. G. et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol. Adv. 33, 1582–1614 (2015).Article CAS PubMed PubMed Central Google Scholar
23. Harvey, A. L., Edrada-Ebel, R. & Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129 (2015).
24. Abedpour, N., Javanmard, M. Z., Karimipour, M., & Farjah, G. H. (2022). Chlorogenic acid improves functional potential of follicles in mouse whole ovarian tissues in vitro. Molecular Biology Reports, 49(11), 10327–10338.
25. Fan, Z., Xiao, Y., Chen, Y., Wu, X., Zhang, G., Wang, Q., & Xie, C. (2015). Effects of catechins on litter size, reproductive performance, and antioxidative status in gestating sows. Animal Nutrition, 1(4), 271–275.
26. Zhang, Y., Lin, H., Liu, C., Huang, J., & Liu, Z. (2020). A review for physiological activities of EGCG and the role in improving fertility in humans/mammals. Biomedicine & Pharmacotherapy, 127, 110186.
27. Adewale, H. B., Jefferson, W. N., Newbold, R. R., & Patisaul, H. B. (2009). Neonatal bisphenol-A exposure alters rat reproductive development and ovarian morphology without impairing activation of gonadotropin-releasing hormone neurons. Biology of Reproduction, 81(4), 690-699. doi: 10.1095/biolreprod.109.078261. [PMC free article] [PubMed] [CrossRef]
28. Markey, C. M., Coombs, M. A., Sonnenschein, C., & Soto, A. M. (2003). Mammalian development in a changing environment: Exposure to endocrine disruptors reveals the developmental plasticity of steroid-
29. hormone target organs. Evolution and Development, 5(1), 67-75. doi: 10.1046/j.1525-142X.2003.03011.x. [PubMed] [CrossRef]
30. Rubin, B. S., Murray, M. K., Damassa, D. A., King, J. C., & Soto, A. M. (2001). Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environmental Health Perspectives, 109(7), 675-680. doi: 10.1289/ehp.01109675. [PMC free article] [PubMed] [CrossRef]
31. Oke, J. M., & Hamburger, O. (2002). Screening of some Nigerian medicinal plants for antoxidant activity using 2, 2, Diphenyl-Picryl-Hydrazyl radical, 5, 77–79.
32. Oladimeji, O. S., Lawal, O. A., & Ogundimu, E. O. (2014). Anti-oxidants levels in female rats administered pro-fertility ethanolic leave extract of byrsocarpus coccineus. European Scientific Journal, 10(15), 349–363.
33. Jahan, S., Munir, F., Razak, S., Mehboob, A., Ain, Q. U., Ullah, H., Afsar, T., Shaheen, G., & Almajwal, A. (2016). Ameliorative effects of rutin against metabolic, biochemical and hormonal disturbances in polycystic ovary syndrome in rats. Journal of Ovarian Research, 9(1).
34. Rotimi, D., Ojo, O. A., Emmanuel, B. A., Ojo, A. B., Elebiyo, T. C., Nwonuma, C. O., & Oluba, O. M. (2021). Protective impacts of gallic acid against cadmium-induced oxidative toxicity in the ovary of rats. Comparative Clinical Pathology, 30(3), 453–460.