BURKHOLDERIA CEPACIA A BIOLOGICAL MODEL FOR PLANT PATHOGEN CONTROL AND HEAVY METAL REMEDIATION
Main Article Content
Keywords
Bacterial complex, biological control, remediation, endophyte.
Abstract
The objective of this study was to demonstrate through in vitro assays the importance of the bacterium belonging to the Burkholderia cepacia complex as a biological resource for the biological control of phytopathogens through the release of secondary metabolite-like compounds and the ability to promote plant growth and assist plants in adaptation and abiotic stress produced by the presence of heavy metal pollutants. The results and scientific evidence carried out by the Agricultural Bioprospecting research group show that B. cepacia produces secondary metabolites with activity against Colletotrichum gloeosporioides and the ability to tolerate high concentrations of lead, cadmium, mercury and nickel.
References
https://doi.org/10.24188/recia.v9.nS.2017.516
2. Ayubb T Nataly, Cerra G Armando, Chamorro A Leonardo, Pérez C Alexander. 2017. Resistencia a cadmio (Cd) de bactérias endofitas y bactérias rizosféricas aisladas a partir de Oriza sativa en Colombia. Rev Colombiana Cienc Anim 2017; 9(Supl 2):281-293.
DOI: 10.24188/recia.v9.n2.2017.610.
3. Barbosa-García Adrian, Pérez Cordero Alexander, Montes Vergara Donicer E. 2022. Bioprospecting Of Endophytic Bacteria With Plant Growth Promoting Activity Associated With Rice Varieties From The Colombian Caribbean. Journal of Namibian Studies, 32: 193-216.
4. Bevivino, A.; Damalstri, C.; Tabacchioni, S.; Chiarini, L. 2000. Eficacy of Burkholderia cepacia MCL 7 in disease suppression and growth promotion of maize. Biology and Fertility of Soils, 31 (3-4): 225-231.
5. Deng, Z., Cao, L., 2017. Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168, 1100–1106.
6. Domka, A.M., Rozpadek, P., Turnau, K., 2019. Are fungal endophytes merely mycorrhizal copycats? The role of fungal endophytes in the adaptation of plants to metal toxicity. Front. Microbiol. 10, 371. https://doi.org/10.3389/
7. Doncel M.P., Pérez C.A. 2017. Burkholderia cepacia aisladas de variedades de ñame con actividad antimicrobiana contra Colletotrichum gloeosporioides. Rev Colombiana Cienc Anim 2017; 9(Supl):31-38. DOI: 10.24188/recia.v9.nS.2017.518
8. Feng, N.X., Yu, J., Zhao, H.M., Cheng, Y.T., Mo, C.H., Cai, Q.Y., Li, Y.W., Li, H., Won, M. H., 2017. Efficient phytoremediation of organic contaminants in soils using plantendophyte partnerships. Sci. Total Environ. 583, 352–368.
9. Franco-Franklin, V., Moreno-Riascos, S., Ghneim-Herrera, T., 2021. Are Endophytic bacteria an option for increasing heavy metal tolerance of plants? A meta-analysis of the effect size. Front. Environ. Sci. 8, 603668 https://doi.org/10.3389/ fenvs.2020.603668.
10. Glowicz, J., Crist, M., Gould, C., Moulton-Meissner, H., Noble-Wang, J., de Man, T.J., Perry, K.A., Miller, Z., Yang, W.C., Langille, S., Ross, J., Garcia, B., Kim, J., Epson, E., Black, S., Pacilli, M., LiPuma, J., & Fagan, R. (2018) B. cepacia Investigation Workgroup. (2018). A multistate investigation of health care–associated Burkholderia cepacia complex infections related to liquid docusate sodium contamination, January-October 2016. Am. J. Infect. Control., 46(6), 649-655.
11. Ghosh, R., Barman, S., Mukherjee, R., & Mandal, N.C. (2016). Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India. Microbiological Research., 183, 80-91.
12. He, W., Megharaj, M., Wu, C.-Y., Subashchandrabose, S.R., Dai, C.-C., 2020. Endophyteassisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants. Crit. Rev. Biotechnol. 40 (1), 31–45.
13. Hernández, A.; García, D.; Hernández, J.; Heydrich, M. 1997. Determinación de algunos géneros bacterianos presentes en la rizósfera del cultivo del maíz. Cultivos Tropicales, 18(3):10-14.
14. Latz, M.A., Jensen, B., Collinge, D.B., Jørgensen, H.J., 2018. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol. Divers. 11, 555–567.
15. Ma, Y., Rajkumar, M., Zhang, C., Freitas, H., 2016. The beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manag. 174 (1): 14–25.
16. Mathew, A., Eberl, L., & Caelier, A. (2014). A novel siderophore-independent strategy of iron uptake in the genus Burkholderia. Molecular Microbiology, 91(4), 805-820.
17. Mahenthiralingam, E., T.A. Urban y J. B. Goldberg. 2005.The Multifarious, Multireplicon Burkholderia Cepacia Complex. Nature Review Microbiol. 3:144-156.
18. Mercado, B.J., Lugtenberg, B.J.J., 2014. Biotechnological applications of bacterial endophytes. Curr. Biotech. 3, 60–75.
19. Mercado-Blanco, J., Lugtenberg, B.J.J., 2014. Biotechnological applications of Bacterial endophytes. Curr. Biotech. 3 (1), 60–75.
20. Oliveira M, SantosnM, Vale M, Delvaux C, Cordero P, Ferreira B Borges, A. (2013) Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Canadian journal of microbiology, 59(4): 221-230.
21. Pérez, C.A.; Chamorro, A.L. 2012. Bacterias endófitas: una alternativa biológica para el control de Burkholderia glumae en el cultivo del arroz en Colombia. Revista Colombiana de Ciencia Animal, 4(1):172-184
22. Pérez-Cordero, Alexander, Barraza-Roman, Zafiro, & Martínez-Pacheco, Dalila. (2015). Identificación de Bacterias Endófitas Resistentes a Plomo, Aisladas de Plantas de Arroz. Agronomía Mesoamericana, 26(2), 267-276.https://dx.doi.org/10.15517/am.v26i2.19281
23. Pérez, A.; Martínez, D.; Barraza, Z.; Marrugo, J. 2016. Bacterias endófitas asociadas a los géneros Cyperus y Paspalum en suelos contaminados con mercurio. Rev. U.D.C.A Act. & Div. Cient. 19 (1):67-76.
24. Pérez Cordero Alexander, Montes Vergara Donicer E., Aguas Mendoza Yelitza. 2023. Isolation of endophytic bacteria as a biological model to contribute to heavy metal phytoremediation. journal of Population Therapeutics & Clinical Pharmacology. 30(1): 578-586. DOI: 10.53555/jptcp.v30i1.2810.
25. Pérez-Cordero, A., Montes–Vergara, D., & Aguas–Mendoza, Y. (2022a). Burkholderia Cepacia Kj935921 A Biological Alternative To Mitigate The Effect Of Cadmium In Tropical Pasture Soils. Webology (ISSN: 1735-188X), 19(5).
26. Pérez-Cordero, A., Montes–Vergara, D., & Aguas–Mendoza, Y. (2022b). In-Vitro Evaluation Of Siderophore Production By Bacteria In The Presence Of Heavy Metal. Webology (ISSN: 1735-188X), 19(5)
27. Pérez-Cordero, A., Montes-Vergara, D., & Aguas-Mendoza, Y.. (2023b). Production of 1-aminocyclopropane-1-carboxylic acid deaminase (ACC) by Burkholderia cepacia as an indicator of cadmium contamination. Journal of Positive Psychology and Wellbeing, 942-949.
28. Pérez, A., Montes, D., & Aguas, Y. (2023b). Endophytic Bacteria Tolerant To High Cadmium Concentrations. Journal of Positive School Psychology, 1390-1401.
29. Rajkumar, M., Ae, N., Freitas, H., 2009. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77 (2), 153–160.
https://doi. org/10.1016/j.chemosphere.2009.06.047.
30. Rathnayake IVN, Mallavarapu M, Krishnamurti GSR, Bolan NS, Naidu R (2013). Heavy metal toxicity to bacteria -Are the existing growth media accurate enough to determine heavy metal toxicity. Chemosphere, 90(3):1195- 1200. https://doi.org/10.1016/j.chemosphere.2 012.09.036.
31. Rojas, F., López, D., Meza, G., Méndez, A., Ibarra, J., & Estrada, P. (2018). The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens. Argent. Microbiol., 51(1), 84-92.
32. Torres Pérez, María Paulina, Vitola Romero, Deimer, & Pérez Cordero, Alexander. (2019). Biorremediación de mercurio y níquel por bacterias endófitas de macrófitas acuáticas. Revista Colombiana de Biotecnología, 21(2), 36-44. Epub January 10, 2020.
https://doi.org/10.15446/rev.colomb.biote.v21n2.79975