PRODUCTIVITY IN THE PHARMACY SECTOR
Main Article Content
Keywords
Pharmaceutical sector, Pharmaceutical industry, PharmacyPharmacy, Production, Bibliometric analysis
Abstract
The presented study uses bibliometric techniques to analyze the growth of efficiency and sustainability research in the pharmaceutical business between 2013 and 2023 with a particular focus on productivity in the field. After analyzing 319 documents from 272 sources, it was found that the amount of science produced annually increased by 22.59%. With almost 250 publications, India is the country that contributes the most, followed by Italy and Brazil. Among other things, research centers on how Industry 4.0 technologies—like artificial intelligence (AI) and the Internet of Things (IoT)—can be applied to boost productivity and flexibility in the pharmaceutical manufacturing process. The Journal of Pharmaceutical Policy and Practice and Chemical Engineering Transactions are two of the most important publications, while Jeju National University and the Institute of Chemical Technology are notable for their high levels of scientific output. Influential writers like BASIT AW and SEHRAWAT R are identified by the h-index analysis, and highly cited articles examine novelties like 3D printing in pharmacology. The research revolves around many key subjects, including "Non human," "Metabolism," and "Chemistry," which emphasize the need for multidisciplinary cooperation. The study's conclusion, which highlights the need of addressing operational challenges through cutting-edge technologies and international collaboration to improve sustainability and efficiency in the pharmaceutical sector and benefit the industry as well as society at large, is that research on pharmaceutical productivity is on the rise.
References
2. Anthwal, A., Uniyal, A., Gairolla, J., Singh, R., Gehlot, A., Abbas, M., & Akram, S. V. (2024). Industry 4.0 Technologies Adoption for Digital Transition in Drug Discovery and Development: A Review. Journal of Industrial Information Integration, 38(1), 100562. https://doi.org/10.1016/j.jii.2024.100562
3. Ayati, N., Saiyarsarai, P., & Nikfar, S. (2020). Short and long term impacts of COVID-19 on the pharmaceutical sector. DARU Journal of Pharmaceutical Sciences. https://doi.org/10.1007/s40199-020-00358-5
4. Bevilacqua, M., Ciarapica, FE, De Sanctis, I., Mazzuto, G. y Paciarotti, C. (2015). Reducción del tiempo de cambio mediante la integración de prácticas lean: un estudio de caso del sector farmacéutico. Automatización de ensamblaje, 35(1), 22–34. https://doi.org/10.1108/aa-05-2014-035
5. Bhaskar, R., Xavier, LSE, Udayakumaran, G., Kumar, DS, Venkatesh, R. y Nagella, P. (2021). Elicitores bióticos: una bendición para la producción in vitro de metabolitos secundarios de plantas. Cultivo de células, tejidos y órganos vegetales (PCTOC). https://doi.org/10.1007/s11240-021-02131-1
6. Britton, J., Davis, R. y O'Connor, KE (2019). Enfoques químicos, físicos y biotecnológicos para la producción del potente antioxidante hidroxitirosol. Microbiología y biotecnología aplicadas, 103(15), 5957–5974. https://doi.org/10.1007/s00253-019-09914-9
7. Bu, Y., Wang, B., Chinchilla-Rodríguez, Z., Sugimoto, C. R., Huang, Y., & Huang, W. B. (2020). Considering author sequence in all-author co-citation analysis. Information Processing & Management, 57(6), 102300. https://doi.org/10.1016/j.ipm.2020.102300
8. Chandel, V., Biswas, D., Roy, S., Vaidya, D., Verma, A., & Gupta, A. (2022). Current advancements in pectin: Extraction, properties and multifunctional applications. Foods, 11(17), 2683. https://doi.org/10.3390/foods11172683
9. Chutrakul, C., Jeennor, S., Panchanawaporn, S., Cheawchanlertfa, P., Suttiwattanakul, S., Veerana, M., & Laoteng, K. (2016). Metabolic engineering of long chain-polyunsaturated fatty acid biosynthetic pathway in oleaginous fungus for dihomo-gamma linolenic acid production. Journal of Biotechnology, 218(1), 85–93. https://doi.org/10.1016/j.jbiotec.2015.12.003
10. Clark, E. A., Alexander, M. R., Irvine, D. J., Roberts, C. J., Wallace, M. J., Sharpe, S., … Wildman, R. D. (2017). 3D printing of tablets using inkjet with UV photoinitiation. International Journal of Pharmaceutics, 529(1-2), 523–530. https://doi.org/10.1016/j.ijpharm.2017.06.085
11. Daly, R., Harrington, T. S., Martin, G. D., & Hutchings, I. M. (2015). Inkjet printing for pharmaceutics – A review of research and manufacturing. International Journal of Pharmaceutics, 494(2), 554–567. https://doi.org/10.1016/j.ijpharm.2015.03.01
12. Delbeke, EIP, Movsisyan, M., Van Geem, KM y Stevens, CV (2016). Modificación química y enzimática de soforolípidos. Química verde, 18 (1), 76–104. https://doi.org/10.1039/c5gc02187a
13. Di Tommaso, M. R., Spigarelli, F., Barbieri, E., & Rubini, L. (2020). The Globalization of China’s Health Industry: Industrial Policies, International Networks and Company Choices. Springer Nature. https://dx.doi.org/10.1007/978-3-030-46671-8
14. Fischer, R., & Buyel, J. F. (2020). Molecular farming – The slope of enlightenment. Biotechnology Advances, 107519. https://doi.org/10.1016/j.biotechadv.2020.107519
15. Fisher, A. C., Kamga, M.-H., Agarabi, C., Brorson, K., Lee, S. L., & Yoon, S. (2018). The Current Scientific and Regulatory Landscape in Advancing Integrated Continuous Biopharmaceutical Manufacturing. Trends in Biotechnology. https://doi.org/10.1016/j.tibtech.2018.08.006
16. Fodi, T., Didaskalou, C., Kupai, J., Balogh, GT, Huszthy, P. y Szekely, G. (2017). Reciclaje de reactivos y disolventes in situ habilitado por nanofiltración para una síntesis sostenible de flujo continuo. ChemSusChem, 10(17), 3435–3444. https://doi.org/10.1002/cssc.201701120
17. Gantait, S., Mitra, M. y Chen, J.-T. (2020). Intervenciones biotecnológicas para la producción de ginsenósidos. Biomoléculas, 10(4), 538. https://doi.org/10.3390/biom10040538
18. Gereffi, G. (2020). What does the COVID-19 pandemic teach us about global value chains? The case of medical supplies. Journal of International Business Policy, 3(3), 287-301. https://doi.org/10.1057/s42214-020-00062-w
19. González Peña, O. I., López Zavala, M. Á., & Cabral Ruelas, H. (2021). Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater. International journal of environmental research and public health, 18(5), 2532. https://doi.org/10.3390/ijerph18052532
20. Górnaś, P., & Rudzińska, M. (2016). Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Industrial Crops and Products, 83(1), 329–338. https://doi.org/10.1016/j.indcrop.2016.01.021
21. Gupta, K. y Chundawat, TS (2020). Nanopartículas de óxido de zinc sintetizadas utilizando Fusarium oxysporum para mejorar la producción de bioetanol a partir de paja de arroz. Biomasa y Bioenergía, 143(1), 105840. https://doi.org/10.1016/j.biombioe.2020.105840
22. Halwani, A. A. (2022). Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics, 14(1), 106. https://doi.org/10.3390/pharmaceutics14010106
23. Hernández-Téllez, C. N., Plascencia-Jatomea, M., & Cortez-Rocha, M. O. (2016). Chitosan-Based Bionanocomposites: Development and Perspectives in Food and Agricultural Applications. Chitosan in the Preservation of Agricultural Commodities, 315–338. https://doi.org/10.1016/b978-0-12-802735-6.00012-4
24. Kamrani, P., Dorsch, I., & Stock, W. G. (2021). Do researchers know what the h-index is? And how do they estimate its importance?. Scientometrics, 126(7), 5489-5508. https://doi.org/10.1007/s11192-021-03968-1
25. Katouzian, I., & Jafari, S. M. (2019). Protein nanotubes as state-of-the-art nanocarriers: Synthesis methods, simulation and applications. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2019.04.026
26. Kavitake, D., Devi, PB y Shetty, PH (2020). Descripción general de los exopolisacáridos producidos por el género Weissella: una revisión. Revista internacional de macromoléculas biológicas, 164(1), 2964–2973. https://doi.org/10.1016/j.ijbiomac.2020.08.185
27. Khairnar, S. V., Pagare, P., Thakre, A., Nambiar, A. R., Junnuthula, V., Abraham, M. C., ... & Dyawanapelly, S. (2022). Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics, 14(9), 1886. https://doi.org/10.3390/pharmaceutics14091886
28. Klimanov, D., Tretyak, O., Goren, U., & White, T. (2021). Transformation of value in innovative business models: The case of pharmaceutical market. Foresight and STI Governance, 15(3), 52-65. https://doi.org/10.17323/2500-2597.2021.3.52.65
29. Kokol, P., Blažun Vošner, H., & Završnik, J. (2021). Application of bibliometrics in medicine: a historical bibliometrics analysis. Health Information & Libraries Journal, 38(2), 125-138. https://doi.org/10.1111/hir.12295
30. Koller, M. (2019). Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament?. The EuroBiotech Journal, 3(1), 32-44. https://doi.org/10.2478/ebtj-2019-0004
31. Kumar, A., Zavadskas, E. K., Mangla, S. K., Agrawal, V., Sharma, K., & Gupta, D. (2018). When risks need attention: adoption of green supply chain initiatives in the pharmaceutical industry. International Journal of Production Research, 1–23. https://doi.org/10.1080/00207543.2018.1543969
32. Kumar, G. (2023). Optimizing pharmaceutical supply chain with digital technologies. International Journal of Science and Research Archive, 9(2), 727-731. https://doi.org/10.30574/ijsra.2023.9.2.0666
33. Kumar, V., Bahuguna, A., Ramalingam, S. y Kim, M. (2021). Desarrollo de un bioproceso sostenible para la producción más limpia de xilooligosacáridos: un enfoque hacia la gestión de residuos lignocelulósicos. Revista de Producción Más Limpia, 316(1), 128332. https://doi.org/10.1016/j.jclepro.2021.128332
34. Lacatusu, I., Badea, N., Niculae, G., Bordei, N., Stan, R., & Meghea, A. (2014). Lipid nanocarriers based on natural compounds: An evolving role in plant extract delivery. European Journal of Lipid Science and Technology, 116(12), 1708–1717. https://doi.org/10.1002/ejlt.201300488
35. Lamichhane, S., Bashyal, S., Keum, T., Noh, G., Seo, JE, Bastola, R.,… Lee, S. (2019). Formulaciones complejas, técnicas simples: ¿Puede la tecnología de impresión 3D ser el toque de Midas en la industria farmacéutica? Revista asiática de ciencias farmacéuticas. https://doi.org/10.1016/j.ajps.2018.11.008
36. Lee, Y.-Y., Tang, T.-K., Chan, E.-S., Phuah, E.-T., Lai, O.-M., Tan, C.-P., … Tan , JS (2021). Triglicéridos de cadena media y triglicéridos de cadena media y larga: metabolismo, producción, impactos en la salud y sus aplicaciones: una revisión. Reseñas críticas en ciencia de los alimentos y nutrición, 1–17. https://doi.org/10.1080/10408398.2021.1873729
37. Lucarini, M., Durazzo, A., Romani, A., Campo, M., Lombardi-Boccia, G., & Cecchini, F. (2018). Bio-Based Compounds from Grape Seeds: A Biorefinery Approach. Molecules, 23(8), 1888. https://doi.org/10.3390/molecules23081888
38. Mamun, NHA, Egertsdotter, U. y Aidun, CK (2015). Tecnología de biorreactor para propagación clonal de plantas y producción de metabolitos. Fronteras en biología, 10(2), 177–193. https://doi.org/10.1007/s11515-015-1355-1
39. Martí, M., Diretto, G., Aragonés, V., Frusciante, S., Ahrazem, O., Gómez-Gómez, L., & Daròs, J.-A. (2020). Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system. Metabolic Engineering. https://doi.org/10.1016/j.ymben.2020.06
40. McAvan, BS, Bowsher, LA, Powell, T., O'Hara, J., Spitali, M., Goodacre, R. y Doig, AJ (2020). Espectroscopia Raman para monitorear las modificaciones y la degradación postraduccionales en terapias con anticuerpos monoclonales. Química analítica. https://doi.org/10.1021/acs.analchem.0c00627
41. Mehariya, S., Goswami, R. K., Karthikeysan, O. P., & Verma, P. (2021). Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere, 280(1), 130553. https://doi.org/10.1016/j.chemosphere.2021.1
42. Melo, A. M. de, Almeida, F. L. C., Cavalcante, A. M. de M., Ikeda, M., Barbi, R. C. T., Costa, B. P., & Ribani, R. H. (2021). Garcinia brasiliensis fruits and its by-products: Antioxidant activity, health effects and future food industry trends – A bibliometric review. Trends in Food Science & Technology, 112(1), 325–335. https://doi.org/10.1016/j.tifs.2021.04.005
43. Mikhaylin, S., Nikonenko, V., Pourcelly, G. y Bazinet, L. (2016). Tecnología híbrida de electrodiálisis/ultrafiltración con membrana bipolar asistida por un campo eléctrico pulsado para la producción de caseína. Química verde, 18(1), 307–314. https://doi.org/10.1039/c5gc00970g
44. Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1). https://doi.org/10.1186/s12934-020-01426-w
45. Nazir, A., Khan, K., Maan, A., Zia, R., Giorno, L., & Schroen, K. (2019). Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2019.02.049
46. Ng, J.-H., Leong, SK, Lam, SS, Ani, FN y Chong, CT (2017). Pirólisis catalítica carbonosa y asistida por microondas de glicerol crudo a partir de residuos de biodiesel para la producción de energía. Conversión y gestión de energía, 143(1), 399–409. https://doi.org/10.1016/j.enconman.2017.04.024
47. Niñerola, A., Sánchez-Rebull, M. V., & Hernández-Lara, A. B. (2021). Six Sigma literature: a bibliometric analysis. Total Quality Management & Business Excellence, 32(9-10), 959-980. https://doi.org/10.1080/14783363.2019.1652091
48. Pappalardo, H. D., Toscano, V., Puglia, G. D., Genovese, C., & Raccuia, S. A. (2020). Cynara cardunculus L. as a Multipurpose Crop for Plant Secondary Metabolites Production in Marginal Stressed Lands. Frontiers in Plant Science, 11(1). https://doi.org/10.3389/fpls.2020.00240
49. Pappenberger, G., & Hohmann, H.-P. (2013). Industrial Production of l-Ascorbic Acid (Vitamin C) and d-Isoascorbic Acid. Biotechnology of Food and Feed Additives, 143–188. https://doi.org/10.1007/10_2013_243
50. Pathak, J., Rajneesh, Singh, PR, Häder, DP y Sinha, RP (2019). Daño y reparación del ADN inducido por los rayos UV: una perspectiva de las cianobacterias. Gen vegetal, 100194. https://doi.org/10.1016/j.plgene.2019.100194
51. Polanco, X. (2006). Análisis de redes: introducción. Redes de conocimiento: Construcción, dinámica y gestión, 77-112. https://hal.science/hal-00218397
52. Prabakar, D., Suvetha K, S., Manimudi, V. T., Mathimani, T., Kumar, G., Rene, E. R., & Pugazhendhi, A. (2018). Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns. Journal of Environmental Management, 218(1), 165–180. https://doi.org/10.1016/j.jenvman.2018.03.136
53. Rahman, M. M., & Howlader, M. S. (2022). The impact of research and development expenditure on firm performance and firm value: evidence from a South Asian emerging economy. Journal of Applied Accounting Research, 23(4), 825-845. https://doi.org/10.1108/JAAR-07-2021-0196
54. Ramirez, J., Gallego, G., Ez, W. N. N. N., & Tirado, J. G. (2023). Blockchain Technology for Sustainable Supply Chains: A Bibliometric Study. Journal of Distribution Science, 21(6), 119-129. https://doi.org/10.15722/jds.21.06.202306.119
55. Ramírez-Duran, J. A., Niebles-Núñez, W., & García-Tirado, J. (2023). Aplicaciones bibliométricas del estudio del capital intelectual dentro de las instituciones de educación superior desde un enfoque sostenible. Saber, Ciencia y Libertad, 18(1). https://n9.cl/2ofg4
56. Rantanen, J., & Khinast, J. (2015). The Future of Pharmaceutical Manufacturing Sciences. Journal of Pharmaceutical Sciences, 104(11), 3612–3638. https://doi.org/10.1002/jps.24594
57. Romani, A., Campo, M., Urciuoli, S., Marrone, G., Noce, A., & Bernini, R. (2020). An Industrial and Sustainable Platform for the Production of Bioactive Micronized Powders and Extracts Enriched in Polyphenols From Olea europaea L. and Vitis vinifera L. Wastes. Frontiers in Nutrition, 7(1). https://doi.org/10.3389/fnut.2020.00120
58. Rong, J., & Zhu, L. (2020). Cleaner production quality regulation strategy of pharmaceutical with collusive behavior and patient feedback. Complexity, 2020(1), 1920523. https://doi.org/10.1155/2020/1920523
59. Rotunno, R., Cesarotti, V., Bellman, A., Introna, V. y Benedetti, M. (2014). Impacto de la integración de seguimiento y localización en los sistemas de producción farmacéutica. Revista Internacional de Gestión Empresarial de Ingeniería, 6(1), 1-25. https://doi.org/10.5772/58934
60. Sarkis, M., Bernardi, A., Shah, N., & Papathanasiou, M. M. (2021). Emerging challenges and opportunities in pharmaceutical manufacturing and distribution. Processes, 9(3), 457. https://doi.org/10.3390/pr9030457
61. Serenko, A. (2021). A structured literature review of scientometric research of the knowledge management discipline: a 2021 update. Journal of knowledge management, 25(8), 1889-1925. https://doi.org/10.1108/JKM-09-2020-0730
62. Shadlen, K. C., & Fonseca, E. M. da. (2013). Health Policy as Industrial Policy. Politics & Society, 41(4), 561–587. https://doi.org/10.1177/0032329213507552
63. Sharma, Reino Unido, Sharma, Alaska y Pandey, Alaska (2016). Atributos medicinales de los principales fenilpropanoides presentes en la canela. BMC Medicina alternativa y complementaria, 16(1). https://doi.org/10.1186/s12906-016-1147-4
64. Sindhu, R. K., Gupta, R., Wadhera, G., & Kumar, P. (2022). Modern herbal nanogels: formulation, delivery methods, and applications. Gels, 8(2), 97. https://doi.org/10.3390/gels8020097
65. Singh, H., Majumdar, A., & Malviya, N. (2020). E-Pharmacy impacts on society and pharma sector in economical pandemic situation: a review. Journal of drug delivery and therapeutics, 10(3), 335-340. https://doi.org/10.22270/jddt.v10i3-s.4122
66. Suyanto, & Salim, R. (2013). Foreign direct investment spillovers and technical efficiency in the Indonesian pharmaceutical sector: firm level evidence. Applied Economics, 45(3), 383–395. https://doi.org/10.1080/00036846.2011.605554
67. Tapia, F., Vázquez-Ramírez, D., Genzel, Y., & Reichl, U. (2016). Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Applied Microbiology and Biotechnology, 100(5), 2121–2132. https://doi.org/10.1007/s00253-015-7267-9
68. Trenfield, S. J., Awad, A., Goyanes, A., Gaisford, S., & Basit, A. W. (2018). 3D Printing Pharmaceuticals: Drug Development to Frontline Care. Trends in Pharmacological Sciences, 39(5), 440–451. https://doi.org/10.1016/j.tips.2018.02.006
69. Vithani, K., Goyanes, A., Jannin, V., Basit, A. W., Gaisford, S., & Boyd, B. J. (2018). An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharmaceutical Research, 36(1). https://doi.org/10.1007/s11095-018-2531-1
70. Woodley, J. M. (2018). Integrating protein engineering with process design for biocatalysis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2110), 20170062. https://doi.org/10.1098/rsta.2017.0062
71. Xu, H., Winnink, J., Yue, Z., Zhang, H., & Pang, H. (2021). Multidimensional Scientometric indicators for the detection of emerging research topics. Technological Forecasting and Social Change, 163(1), 120490. https://doi.org/10.1016/j.techfore.2020.120490
72. Yunus, E. N. (2021). The mark of industry 4.0: how managers respond to key revolutionary changes. International Journal of Productivity and Performance Management, 70(5), 1213-1231. https://doi.org/10.1108/IJPPM-12-2019-0590
73. Zhang, B., Ma, L., & Liu, Z. (2020). Literature trend identification of sustainable technology innovation: A bibliometric study based on co-citation and main path analysis. Sustainability, 12(20), 8664. https://doi.org/10.3390/su12208664