METHODOLOGY FOR ISOLATION OF ENDOPHYTIC BACTERIA AND EVALUATION OF HEAVY METAL REMEDIATION EFFICIENCY

Main Article Content

Alexander Pérez Cordero
Donicer E. Montes Vergara
Yelitza Aguas Mendoza

Keywords

Endophytic bacteria, heavy metal, tolerance

Abstract

The aim of this study was to show the different protocols for the isolation, evaluation of the resistance capacity and identification of endophytic bacteria associated with different plant tissues adapted to environments contaminated with heavy metals. The protocols used have allowed the isolation and evaluation of a diversity of endophytic bacteria able to tolerate high concentrations of mercury and nickel.

Abstract 78 | pdf Downloads 30

References

1. COLIN V.L., L.B. VILLEGAS & C.M. ABATE. 2012. Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. International Biodeterioration & Biodegradation 69: 28-37. doi:10.1016/j.ibiod.2011.12.001
2. COLPAERT J.V., J.H.L.WEVERS, E. KRZNARIC, et al. 2011. How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals of Forest Science 68 (1): 17-24. doi:10.1007/s13595-010-0003-9.
3. GUO H., S. LUO, L. CHEN, et al. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology 101(22): 8599–8605. doi:10.1016/j.biortech.2010.06.085
4. OLIVEIRA, M.; SANTOS, T.; VALE, H.; DELVAUX, J.; CORDERO, P.; FERREIRA, A.; MIGUEL, P.; TOTOLA, M.; COSTA, M.; MORAES, C.; BORGES, A. 2013. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can. J. Microbiol. 59:221-30.
5. MA, Y.; OLIVEIRA, R.; NAI, F.; RAJKUMAR, M.; LUO, Y.; ROCHA, I.; FREITAS, H. 2015. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J. Environm. Managem. 156:62-69.
6. MUÑOZ A.J., E. RUIZ, H. ABRIOUEL, et al. 2012. Heavy metal tolerance of microorganisms isolated from wastewaters: Identification and evaluation of its potential for biosorption. Chemical Engineering Journal. 210 (1): 325-332.
7. PÉREZ, A.; ROJAS, J.; FUENTES, J. 2010. Diversidad de bacterias endófitas asociadas a raíces del pasto colosuana (Bothriochloa pertusa) en tres localidades del departamento de Sucre, Colombia. Acta Biol. Col. 15 (2):219-228.
8. PÉREZ, A.; ARROYO, E.; CHAMORRO, A. 2015. Resistencia a níquel en bacterias endófitas aisladas a partir de Oriza sativa en Colombia. Rev. Soc. Venez. Microbiol. 35:20-25.
9. PÉREZ, A.; MARTÍNEZ, D.; BARRAZA, Z.; MARRUGO, J. 2016. Bacterias endófitas asociadas a los géneros Cyperus y Paspalum en suelos contaminados con mercurio. Rev. U.D.C.A Act. & Div. Cient. 19(1): 67-76.
10. RAJKUMAR, M.; NORIHARU, A.; FREITAS, H. 2009. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153- 160.
11. VARGAS-GARCÍA M., M.J. LÓPEZ, F. SUÁREZ-ESTRELLA, et al. 2012. Compost as a source of microbial isolates for the bioremediation of heavy metals: In vitro selection. Science of The Total Environment 431: 62–67. doi:10.1016/j.scitotenv.2012.05.026
12. WANG, Y.; GREGER, M. 2004. Clonal differences in mercury tolerance, accumulation, and distribution in willow. J. Environm. Quality. 33:1779-1785.
13. Wuana R.A. & F.E. Okieimen. 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Network Ecology 2011: 1–20. doi:10.5402/2011/402647
14. WEYENS, N.; VAN DER LELIE, D.; TAGHAVI, S.; VANGRONSVELD, J. 2009. Phytoremediation: plantendophyte partnerships take the challenge. Current Opinion Biotechn. 20:248-254.

Most read articles by the same author(s)

1 2 > >>