PREPARING FOR VANESSA'S LAW COLLABORATION BETWEEN THE MEDICAL RECORDS AND PHARMACY DEPARTMENTS AT A CANADIAN HOSPITAL CENTRE

Main Article Content

Pauline Rault
Dana Necsoiu
Isabelle Desjardins
Denis Lebel
Jean-François Bussières

Keywords

Adverse drug reaction reporting systems, Clinical coding, Drug-related side effects and adverse reactions, Forms and records control, Medical records

Abstract

Background and Objective


In the context of Vanessa’s Law, the medical records department and the pharmacy team of a mother-child hospital collaborated to create a system for coding adverse drug reactions (ADRs). This study was conducted to validate the coding of ADRs by the medical records team.


Material and Methods


This retrospective descriptive study covered 12 months of coding of hospitalization data by the medical records team (November 1, 2017, to October 31, 2018). The pharmacy team performed twice-monthly analysis to validate the ADR data, based on coded information for drugs and associated clinical manifestations.


Results


Over the 12-month study period, a total of 755 ADRs were coded by the medical records department (i.e., 2.1 ADRs per day, corresponding to 7.1% of admissions). For 34 (4.5%) of these ADRs the pharmacy team made a change to the code originally assigned by the medical records department. Eighty-five (11.5%) of the coded ADRs were deemed serious, as defined by Health Canada, but only 13 (15%) of these serious ADRs were reported to the regulatory authority. The new process allowed clinical manifestation codes to be associated with individual drugs in the pharmacy’s Med-Echo-Plus® software, which facilitated interpretation of the data. Following this study, coding practices were reviewed, a coding algorithm was developed, and the codes for 18 drugs were clarified.


Conclusion


This study highlights the feasibility of establishing a link between the medical records and pharmacy departments to validate the coding of ADRs. At the study hospital, this linkage has identified serious ADRs, for which reporting will soon be required by Health Canada.

Abstract 696 | pdf Downloads 485 HTML Downloads 103 xml Downloads 29

References

1. Government of Canada. Mandatory reporting of serious adverse drug reactions and medical device incidents by hospitals – Draft guidance document. Available from: https://www.canada.ca/en/health-canada/services/drugs-health-products/public-involvement-consultations/medeffect-can-ada/consultation-draft-guidance-hospital-manda-tory-reporting-regulations/guidance-document.html (accessed on: May 21, 2019).
2. Government of Canada. Regulations amending the food and drug regulations (Vanessa’s Law). Regulatory impact analysis statement. Available from: http://www.gazette.gc.ca/rp-pr/p1/2017/2017-04-22/html/reg4-eng.html (accessed on: May 21, 2019).
3. Government of Canada. Justice laws website. Protecting Canadians from Unsafe Drugs Act (Vanessa’s Law), S.C. 2014, c. 24. Available from: https://laws.justice.gc.ca/eng/AnnualStatutes/2014_24/page-1.html (accessed on: May 21, 2019).
4. Soyer J, Necsoiu D, Lebel D, Bussières JF. Proportion d’effets indésirables médicamenteux identifies par les pharmaciens qui sont codifiés par les archivistes médicaux. (EIM4A) Congrès de l’Association des pharmaciens des établisse-ments de santé du Québec, 25–27 avril 2018, Drummonville, Québec, Canada. Pharmactuel. 2018;51(3):209. https://pharmactuel.com/index.php/pharmactuel/article/view/1249/1028
5. Soyer J, Necsoiu D, Lebel D, Bussières JF. Comprendre la classification internationale des maladies (CIM) et la classification canadienne des interventions: Exemples d’utilisation pour le phar-macien hospitalier. (CODIFICATION2) Congrès de l’Association des pharmaciens des établisse-ments de santé du Québec, 25–27 avril 2018, Drummonville, Québec, Canada. Pharmactuel. 2018;51(3):209. https://pharmactuel.com/index.php/pharmactuel/article/view/1249/1028
6. Canadian Institute for Health Information. Version 2018 ICD-10-CA and CCI classifications. Available from: https://www.cihi.ca/en/version-2018-icd-10-ca-and-cci-classifications (accessed on: May 21, 2019).
7. Soyer J, Necsoiu D, Lebel D, Bussières JF. Codage des séjours patients par les archivistes médicaux du Centre hospitalier universitaire Sainte-Justine: une source inestimable de données pour le phar-macien. Pharmactuel. 2018;51(4):1–9.
8. Ministère de la Santé et des Services sociaux. Cadre normatif de la banque de données APR-DRG 2017-2018; Annexe 2, liste des codes APR-DRG. PDF. Available from: http://www.wdrg.msss.rtss.qc.ca/. (accessed on: May 3, 2019).
9. Conseil d’examen du prix des médicaments bre-vetés. Rapport annuel 2017. Available from; http://www.pmprb-cepmb.gc.ca/view.asp?ccid=%E2%80%8B1380&lang=fr. (accessed on: May 3, 2019).
10. American Hospital Formulary Service. Classification. Available from: http://www.ahfsdru-ginformation.com/. (accessed on: May 3, 2019).
11. Kongkaew C, Noyce PR, Ashcroft DM. Hospital admissions associated with adverse drug reactions: A systematic review of prospective observational studies. Ann Pharmacother. 2008 Jul;42(7):1017–25. http://dx.doi.org/10.1345/aph.1L037
12. Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, et al. Adverse drug reactions as cause of admission to hospital: A prospective analysis of 18820 patients. BMJ. 2004;329:15–19. http://dx.doi.org/10.1136/bmj.329.7456.15
13. Alvarez-Requejo A, Carvajal A, Bégaud B, Moride Y, Vega T, Martín Arias LH. Under-reporting of adverse drug reactions Estimate based on a spontaneous reporting scheme and a sentinel. Eur J Clin Pharmacol. 1998;54:483. http://dx.doi.org/10.1007/s002280050498
14. Hazell L, Shakir SAW. Under-reporting of adverse drug reactions; a systematic review. Drug Safety. 2006;29:385. http://dx.doi.org/10.2165/%E2%80%8B00002018-200629050-00003
15. Impicciatore P, Choonara I, Clarkson A, Provasi D, Pandolfini C, Bonati M. Incidence of adverse drug reactions in paediatric in/out-patients: A systematic review and meta-analysis of prospective studies. Br J Clin Pharmacol. 2001 Jul;52(1):77–83. http://dx.doi.org/10.1046/j.0306-5251.2001.01407.x
16. McMaster C, Liew D, Keith C, Frauman A. Machine-learning algorithm to optimise auto-mated adverse drug reaction detection from clinical coding. Drug Saf. 2019;42(6):721–5. http://dx.doi.org/10.1007/s40264-018-00794-y
17. Association des gestionnaires de l’information de la santé du Québec (AGISQ). Available from: https://www.agisq.ca (accessed on: May 3, 2019).

Most read articles by the same author(s)