METHODOLOGY FOR EVALUATING THE EFFICIENCY OF NICKEL BIOSORPTION BY Chlorella vulgaris IN PHYCOREACTORS

Main Article Content

Alexander Pérez Cordero
Donicer E. Montes Vergara
Yelitza Aguas Mendoza

Keywords

nickel, microalgae, removal, suspension, immobilization

Abstract

The aim of the present study was to evaluate the Ni2+ removal capacity of Chlorella vulgaris in solution and immobilized on Luffa cylindrical for 25 days in phyco-reactors and subsequently subjected to concentrations of 0.5, 1.0, 1.5 and 2.0 mg/L NiCl2 for 24 h in constant light. The immobilized microalgae showed high percentages of 98.0 % Ni2+ removal. With respect to the concentrations of nickel, Chlorella vulgaris showed a higher removal at a higher concentration of 2.0 mg/L with 95.8 % removal for nickel, which is possibly due to the fact that the cells of Chlorella vulgaris have a high affinity for divalent Ni2+ metals that interact with the functional groups present in the membrane of the microalgae and act as binding and neutralization points for the toxicity of these pollutants. Therefore, phyco-remediation using immobilized Chlorella vulgaris is a technique with a high capacity for remediation of Ni2+ contaminated waters.

Abstract 56 | pdf Downloads 37

References

1. Akhtar, N., Iqbal, J., & Iqbal, M. (2004). Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J. Hazard. Mater. 108(1-2), 85–94.
2. Arief, V.O., Trilestari, K., Sunarso, J., Indraswati, N., & Ismadji, S. (2008). Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean. 36(12), 937-962.
3. Akhtar, N., Iqbal, J., & Iqbal, M. (2004). Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J. Hazard. Mater. 108(1-2), 85–94.
4. Becker, D.S., & Bigham, G.N. (1995). Distribution of mercury in the aquatic food web of Onondaga Lake, New York. Water Air Soil Pollut. 80(1-4), 563-571.
5. Benítez, S., Pérez, A. & Vitola, D. (2018). Removal and recovery of mercury in vitro using immobilized live biomass of Chlorella sp. Indian Journal of Science and Technology, 11(45), 1-8. https://doi.org/10.17485/ijst/2018/v11i45/137575.
6. Chavez, I. (2016). Analytical methodologies currently used for the determination of mercury in fish muscle. revista pensamiento actual. 16(26), 113-122.
7. de-Bashan, L.E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol. 101(6), 1611-1627.
8. García, B.A., Le Faucheur, F.S., Monperrus, M., Amouroux, D., & Slaveykova, V.I. (2014). Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii. Environ. Pollut. 192, 212-215.
9. Gutiérrez-Benítez, O., González-Álvarez, J., Freire-Leira, M.S., Rodríguez-Rico, I.L., y Moreira-González, A.R. (2014). Potencialidades de un biosorbente algal para la remoción de metales pesados. Tecnología Química. 34(1), 82-93.
10. Hernández, Y., Pérez, A. & Vitola, D. (2018). Biosorption of mercury and nickel in vitro by microalga Chlorella sp. in solution and immobilized in dry fruit of squash (Luffa cylindrica). Indian Journal of Science and Technology, 11(41), 1-8 https://dx.doi.org/10.17485/ijst/2018/v11i41/131111.
11. Infante, C., Angulo, E., Zárate, A., Florez, J.Z., Barrios, F., & Zapata, C. (2012). Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Av. cien. ing. 3(2), 159-164.
12. Kaplan, D. (2013). Absorption and adsorption of heavy metals by microalgae. Richmond and Hu (Eds.), Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Blackwell Publishing. p. 439-447.
13. Nabizadeh, R., Naddafi, K., Mesdaghinia, A., & Nafez, A.H. (2008). Feasibility study of organic matter and ammonium removal using loofa sponge as a supporting medium in an aerated submerged fixed-film reactor (ASFFR). Electron J. Biotechnol. 11(4), 1-9.
14. Sánchez, E., Garza, M., Almaguer, V., Sáenz, I., & Liñán, A. (2008). Estudio cinético e isotermas de adsorción de Ni (II) y Zn (II) utilizando biomasa del alga Chlorella sp. inmovilizada. Ciencia UNAL. 11(2), 168-176.
15. Vitola, R.D.C., Pérez, C.A.F., & Oviedo, G.Y. (2018). Biodegradation activity of crude oil by Chlorella sp. under mixotrophic conditions. Indian J. Sci. Technol. 11(29), 1-8.
16. Vitola, D. Pérez, A., Montes, D. (2022). Utilización de microalgas como alternativa para la remoción de metales pesados. Revista de Investigación Agraria y Ambiental, 13(1), 195 – 203. DOI: https://doi.org/10.22490/21456453.4568
17. Yin, K., Wang, Q., Lv, M., & Chen, L. (2019). Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 360, 1553-1563.

Most read articles by the same author(s)

1 2 > >>