SYNTHESIS, MOLECULAR CHARACTERIZATION OF SILVER NANOPARTICLES AND THEIR ANTIBACTERIAL ACTIVITY AGAINST KLEBSIELLA PNEUMONIAE

Main Article Content

Fayez Althobaiti

Keywords

Silver nanoparticles, Aspergillus niger, Klebsiella pneumoniae, Antibacterial

Abstract

Klebsiella pneumoniae bacteria have been known for causing a huge number of infections, such as pneumonia, wound or surgical site infections, meningitis, and liver abscesses. Traditionally, Klebsiella pneumoniae is considered to be the causative agent of many serious infections mainly in immunodeficient individuals, but the recent emergence and spread of hypervirulent strains have broadened the number of people susceptible to infections to include those who are healthy and immunosufficient. Moreover, Klebsiella pneumoniae strains have become progressively resistant to a lot of antibiotics treatment protocols and their infections are very challenging to treat. In our research work, we have done an assessment and evaluation of the anti-bacterial action of silver nanoparticles as an alternative for regular treatment protocols for the Klebsiella pneumoniae infections. The bacteria were isolated for soil and the procedures for the identification of bacteria have been achieved through using the both of the biochemical examination and polymerase chain reaction (PCR). The biochemical tests used were included tests like catalase, oxidase, urease, citrate utilization and methyl red test, in addition, polymerase chain reaction has confirmed the identification of the bacteria and the band position of Klebsiella pneumoniae was 130 bp after being visualized on 1.5% agarose gel. With respect to the synthesis and characterization processes of  the silver nanoparticles, the nanoparticles were formed using a green synthesis approach through utilizing the Aspergillus niger to avoid pollution that related to the chemical synthesis approach, to obtain the physicochemical report of  the silver nanoparticles, a number of characterization techniques have been done, like FTIR to acquire the infrared absorption spectrum of the the silver nanoparticles which acts as a fingerprint for the substance, TEM and SEM in the sake of displaying the morphology and giving information about the size and shape of the nanoparticles. With regard to the anti-bacterial activity of silver nanoparticles, agar well diffusion method has been done and the both of MIC and inhibition zone values have been obtained. The values were 156.25 µg/ml and 14 mm respectively.

Abstract 109 | PDF Downloads 73

References

1. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252–75.
2. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. ClinMicrobiol Rev. 1998;11(4):589–603.
3. Giske CG, Monnet DL, Cars O, Carmeli Y. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother. 2008;52(3):813–21.
4. Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [CrossRef] [PubMed].
5. Teixeira, M.; Sanchez-Lopez, E.; Espina, M.; Calpena, A.; Silva, A.; Veiga, F.; Garcia, M.L.; Souto, E. Chapter 9—Advances in antibiotic nanotherapy: Overcoming antimicrobial resistance. In Emerging Nanotechnologies in Immunology; Elsevier: Boston, MA, USA, 2018; pp. 233–259.
6. Bartlett, J.G.; Gilbert, D.N.; Spellberg, B. Seven Ways to Preserve the Miracle of Antibiotics. Clin. Infect. Dis. 2013, 56, 1445–1450. [CrossRef]
7. R. Singh, M. S. Smitha and S. P. Singh, J. Nanosci. Nanotechnol., 2014, 14, 4745–4756.
8. M. Natan and E. Banin, FEMS Microbiol. Rev., 2017, 41, 302–322.
9. P. V. Baptista, M. P. McCusker, A. Carvalho, D. A. Ferreira, N. M. Mohan, M. Martins and A. R. Fernandes, Front. Microbiol., 2018, 9, 1441.
10. S. Muzammil, S. Hayat, M. Fakhar-E-Alam, B. Aslam, M. H. Siddique, M. A. Nisar, M. Saqalein, M. Atif, Sarwar, A. Khurshid, N. Amin and Z. Wang, Front. Biosci., Elite Ed., 2018, 10, 352–374.
11. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne and M. K. Danquah, Beilstein J. Nanotechnol., 2018, 9, 1050– 1074.
12. K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y. Echegoyen Sanz, J. M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, G. Pérez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castelló and M. Schmid, Nanomaterials, 2017, 7, 74.
13. M. A. Gatoo, S. Naseem, M. Y. Arfat, A. M. Dar, K. Qasim and S. Zubair, BioMed Res. Int., 2014, 2014, 498420.
14. Mahendra R, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 2009; 27:76-83.
15. Pal STY, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticles? A study of the gram-negative bacterium Escherechia coli. Appl Environ Microbiol 2007; 27:1712-20.
16. Sanpui P, Murugadoss A, Prasad PV, Ghosh SS, Chattopadhyay A. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int J Food Microbiol 2008; 124:142-6
17. Deepika L, Kannabiran K (2010) Biosurfactant and heavy metal resistance activity of Streptomyces spp. Isolated from Saltpan soil. British J Pharmacol Toxicol 1:33–39
18. Nandhini B, Josephine RM (2013) A study on bacterial and fungal diversity in potted soil. Int J Curr Microbiol App Sci 2(2):1–5
19. Techaoei S, Lumyong S, Prathumpai W, Santiarwarn D, Leelapornoisid P (2011) Screening, characterization and stability of biosurfactant produced by Pseudomonas aeruginosa SCMU106 isolated from soil in Northern Thailand Asian. J Biol Sci 4(4):340–351
20. G. M. Obunukwu1, K. S. Dike and G. E. Nwakwasi. Isolation and Identification of Microbial Deteriogens of Fresh Tomatoes Stored at Ambient Temperature. Microbiology Research Journal International 26(1): 1-8, 2018; Article no.MRJI.45193
21. Turton, J.F.; Perry, P.; Elgohari, S. and Hampton, C.V. (2010): PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. Journal of Medical Microbiology, 59, 541–547.
22. A. K. Gade, P. Bonde, A. P. Ingle, P. D. Marcato, N. Durán and M. K. Rai. Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles. Journal of Biobased Materials and Bioenergy Vol.2, 243–247, 2008
23. Hindler ,J.A.;Howard,B.J. and Keiser, J.F.(1994): Antimicrobial agents and Susceptibility testing. In: Howard BJ(Editor), Clinical and pathogenic Microbiology. Mosby-Year Book Inc., St. Louis, MO,USA.
24. Friedlander C. 1882. Uber die scizomyceten bei der acuten fibrosen pneumonie. Arch Pathol Anat Physiol Klin Med 87:319–324.
25. Merino S, Camprubi S, Alberti S, Benedi VJ, Tomas JM. 1992. Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing. Infect Immun 60:2529–2535.
26. Bagley ST. 1985. Habitat association of Klebsiella species. Infect Control 6:52–58.
27. Rock C, Thom KA, Masnick M, Johnson JK, Harris AD, Morgan DJ. 2014. Frequency of Klebsiella pneumoniae carbapenemase (KPC)- producing and non-KPC-producing Klebsiella species contamination of healthcare workers and the environment. Infect Control Hosp Epidemiol 35:426–429. http :/ / dx.doI.org /10.1086/675598.
28. Renata K. T. Kobayashi and Gerson Nakazato. Editorial: Nanotechnology for Antimicrobials. EDITORIAL published: 09 July 2020 doi: 10.3389/fmicb.2020.01421
29. Ijeoma Vivian Nwaguma, Chioma Blaise Chikere and Gideon Chijioke Okpokwasili. Isolation, characterization, and application of biosurfactant by Klebsiella pneumoniae strain IVN51 isolated from hydrocarbon‑polluted soil in Ogoniland, Nigeria. Nwaguma et al. Bioresour. Bioprocess. (2016) 3:40 DOI 10.1186/s40643-016-0118-4
30. Yogesh Chander, M. A. Ramakrishnan, Naresh Jindal, Kevan Hanson and Sagar M. Goyal. Differentiation of Klebsiella pneumoniae and K. oxytoca by Multiplex Polymerase Chain Reaction. Vol. 9, No. 2, 2011 • Intern J Appl Res Vet Med.
31. Archana Singh Sikarwar and Harsh Vardhan Batra. Prevalence of Antimicrobial Drug Resistance of Klebsiella pneumoniae in India. International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 1, No. 3, September 2011.
32. Nuha M. Alhazmi. Fungicidal Activity of Silver and Silica Nanoparticles against Aspergillus sydowii Isolated from the Soil in Western Saudi Arabia. Microorganisms 2023, 11, 86. https : / / doI.org /10.339 0/microorganisms11010086
33. Seetharam Charannya, Dasarathan Duraivel, Krishnan Padminee, Saravanan Poorni, Cruz Nishanthine, Manali Ramakrishnan Srinivasan. Comparative Evaluation of Antimicrobial Efficacy of Silver Nanoparticles and 2% Chlorhexidine Gluconate When Used Alone and in Combination Assessed Using Agar Diffusion Method: An In vitro Study. Contemporary Clinical Dentistry | Volume 9 | Supplement 2 | September 2018(PMID: 30294145).