PROBIOTICS – INTERPLAY BETWEEN GUT FLORA, IMMUNITY, AND MENTAL HEALTH
Main Article Content
Keywords
Probiotics, LAB, Gut Micro biota, Bifidobacteria, immunotherapy, AC-T, cancer treatment
Abstract
Probiotics are live microorganisms that provide health benefits when consumed in adequate amounts. The gut is home to trillions of microorganisms, collectively known as the gut microbiota, which play a crucial role in maintaining gut health and overall well-being. In recent years, there has been growing interest in the potential of probiotics to modulate the gut microbiota and improve various aspects of health, including immunity and mental health. In conclusion, probiotics have the potential to modulate the gut microbiota, enhance immune function, and improve mental health. Further research is needed to fully understand the mechanisms underlying these effects and to identify the most effective probiotic strains and dosages for different health outcomes.
References
2. Breit, S., Kupferberg, A., Rogler, G. and Hasler, G., 2018. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Frontiers in psychiatry, p.44.
3. Bokaee, S., 2011. Targeting Homeobox genes for cancer immunotherapy. University of Surrey (United Kingdom).
4. Bennett, T.J., Udupa, V.A. and Turner, S.J., 2020. Running to stand still: naive CD8+ T cells actively maintain a program of quiescence. International Journal of Molecular Sciences, 21(24), p.9773.
5. Belkaid, Y. and Hand, T.W., 2014. Role of the microbiota in immunity and inflammation. Cell, 157(1), pp.121-141.
6. Calvani, M., Pasha, A. and Favre, C., 2020. Nutraceutical boom in cancer: inside the labyrinth of reactive oxygen species. International journal of molecular sciences, 21(6), p.1936.
7. Choi, H.H. and Cho, Y.S., 2016. Fecal microbiota transplantation: current applications, effectiveness, and future perspectives. Clinical endoscopy, 49(3), pp.257-265.
8. . Den Besten, G., Van Eunen, K., Groen, A.K., Venema, K., Reijngoud, D.J. and Bakker, B.M., 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research, 54(9), pp.2325-2340.
9. Drago, L., 2019. Probiotics and colon cancer. Microorganisms, 7(3), p.66.
10. Das, S. and Johnson, D.B., 2019. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. Journal for immunotherapy of cancer, 7(1), pp.1-11.
11. Derosa, L., Routy, B., Desilets, A., Daillère, R., Terrisse, S., Kroemer, G. and Zitvogel, L., 2021. Microbiota-Centered Interventions: The Next Breakthrough in Immuno-Oncology? Microbiota-Centered Interventions in Immuno-Oncology?. Cancer Discovery, 11(10), pp.2396-2412.
12. Donaldson, M.S., 2004. Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutrition journal, 3(1), pp.1-21.
13. Elahi, R., Heidary, A.H., Hadiloo, K. and Esmaeilzadeh, A., 2021. Chimeric antigen receptor-engineered natural killer (CAR NK) cells in Cancer treatment; recent advances and future prospects. Stem Cell Reviews and Reports, 17(6), pp.2081-2106..
14. Feng, M., Jiang, W., Kim, B., Zhang, C.C., Fu, Y.X. and Weissman, I.L., 2019. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nature Reviews Cancer, 19(10), pp.568-586.
15. Hemarajata, P. and Versalovic, J., 2013. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic advances in gastroenterology, 6(1), pp.39-51.
16. Hibberd, A.A., Lyra, A., Ouwehand, A.C., Rolny, P., Lindegren, H., Cedgård, L. and Wettergren, Y., 2017. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ open gastroenterology, 4(1), p.e000145.
17. Hemarajata, P. and Versalovic, J., 2013. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic advances in gastroenterology, 6(1), pp.39-51.
18. Huang, C.H., Lin, Y.C. and Jan, T.R., 2017. Lactobacillus reuteri induces intestinal immune tolerance against food allergy in mice. Journal of Functional Foods, 31, pp.44-51.
19. Hemarajata, P. and Versalovic, J., 2013. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic advances in gastroenterology, 6(1), pp.39-51.
20. Huang, L., Ge, X., Liu, Y., Li, H. and Zhang, Z., 2022. The Role of Toll-like Receptor Agonists and Their Nanomedicines for Tumor Immunotherapy. Pharmaceutics, 14(6), p.1228.
21. Kailasapathy, K. and Chin, J., 2000. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and cell biology, 78(1), pp.80-88.
22. Kreamer, K.M., 2014. Immune checkpoint blockade: a new paradigm in treating advanced cancer. Journal of the advanced practitioner in oncology, 5(6), p.418.
23. . Li, X., Zhang, S., Guo, G., Han, J. and Yu, J., 2022. Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine, 82, p.104163.
24. Lin, Y.P., Thibodeaux, C.H., Peña, J.A., Ferry, G.D. and Versalovic, J., 2008. Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun. Inflammatory bowel diseases, 14(8), pp.1068-1083.
25. Lau, H.C.H., Sung, J.J.Y. and Yu, J., 2021. Gut microbiota: impacts on gastrointestinal cancer immunotherapy. Gut Microbes, 13(1), p.1869504.
26. . Iida, N., Dzutsev, A., Stewart, C.A., Smith, L., Bouladoux, N., Weingarten, R.A., Molina, D.A., Salcedo, R., Back, T., Cramer, S. and Dai, R.M., 2013. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. science, 342(6161), pp.967-970.
27. Li, B., Gong, T., Hao, Y., Zhou, X. and Cheng, L., 2021. Mining the gut microbiota for microbial-based therapeutic strategies in cancer immunotherapy. Frontiers in Oncology, 11.
28. . Mu, Q., Tavella, V.J. and Luo, X.M., 2018. Role of Lactobacillus reuteri in human health and diseases. Frontiers in microbiology, 9, p.757.
29. . Mager, L.F., Burkhard, R., Pett, N., Cooke, N.C., Brown, K., Ramay, H., Paik, S., Stagg, J., Groves, R.A., Gallo, M. and Lewis, I.A., 2020. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science, 369(6510), pp.1481-1489.
30. Nitzan, O., Elias, M., Chazan, B., Raz, R. and Saliba, W., 2013. Clostridium difficile and inflammatory bowel disease: role in pathogenesis and implications in treatment. World journal of gastroenterology: WJG, 19(43), p.7577.
31. Nagai, H. and Kim, Y.H., 2017. Cancer prevention from the perspective of global cancer burden patterns. Journal of thoracic disease, 9(3), p.448.
32. . Poggi, A., Benelli, R., Venè, R., Costa, D., Ferrari, N., Tosetti, F. and Zocchi, M.R., 2019. Human gut-associated natural killer cells in health and disease. Frontiers in immunology, 10, p.961.
33. Petrelli, F., Iaculli, A., Signorelli, D., Ghidini, A., Dottorini, L., Perego, G., Ghidini, M., Zaniboni, A., Gori, S. and Inno, A., 2020. Survival of patients treated with antibiotics and immunotherapy for cancer: a systematic review and meta-analysis. Journal of Clinical Medicine, 9(5), p.1458.
34. Pinato, D.J., Howlett, S., Ottaviani, D., Urus, H., Patel, A., Mineo, T., Brock, C., Power, D., Hatcher, O., Falconer, A. and Ingle, M., 2019. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA oncology, 5(12), pp.1774-1778.
35. Quigley, E.M., 2013. Gut bacteria in health and disease. Gastroenterology & hepatology, 9(9), p.560.
36. Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A. and Mele, M.C., 2019. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7(1), p.14.
37. Śliżewska, K., Markowiak-Kopeć, P. and Śliżewska, W., 2020. The role of probiotics in cancer prevention. Cancers, 13(1), p.20.
38. Sender, R., Fuchs, S. and Milo, R., 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS biology, 14(8), p.e1002533.
39. Salleh, M.R., 2008. Life event, stress and illness. The Malaysian journal of medical sciences: MJMS, 15(4), p.9.
40. Sharpe, M. and Mount, N., 2015. Genetically modified T cells in cancer therapy: opportunities and challenges. Disease models & mechanisms, 8(4), pp.337-350.
41. Seddon, J. and Bhagani, S., 2011. Antimicrobial therapy for the treatment of opportunistic infections in HIV/AIDS patients: a critical appraisal. HIV/AIDS-Research and Palliative Care, pp.19-33.
42. . Staley, C., Weingarden, A.R., Khoruts, A. and Sadowsky, M.J., 2017. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Applied microbiology and biotechnology, 101(1), pp.47-64.
43. Thursby, E. and Juge, N., 2017. Introduction to the human gut microbiota. Biochemical journal, 474(11), pp.1823-1836.
44. Thomas, C.M., Hong, T., Van Pijkeren, J.P., Hemarajata, P., Trinh, D.V., Hu, W., Britton, R.A., Kalkum, M. and Versalovic, J., 2012. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PloS one, 7(2), p.e31951.
45. Tsai, A.K. and Davila, E., 2016. Producer T cells: Using genetically engineered T cells as vehicles to generate and deliver therapeutics to tumors. Oncoimmunology, 5(5), p.e1122158.
46. Ventola, C.L., 2017. Cancer immunotherapy, part 2: efficacy, safety, and other clinical considerations. Pharmacy and Therapeutics, 42(7), p.452.
47. Vétizou, M., Pitt, J.M., Daillère, R., Lepage, P., Waldschmitt, N., Flament, C., Rusakiewicz, S., Routy, B., Roberti, M.P., Duong, C.P. and Poirier-Colame, V., 2015. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 350(6264), pp.1079-1084.
48. Wallace, C.J. and Milev, R., 2017. The effects of probiotics on depressive symptoms in humans: a systematic review. Annals of general psychiatry, 16(1), pp.1-10.
49. . Wu, R., Forget, M.A., Chacon, J., Bernatchez, C., Haymaker, C., Chen, J.Q., Hwu, P. and Radvanyi, L., 2012. Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer journal (Sudbury, Mass.), 18(2), p.160.
50. Wang, S., Zhu, K., Hou, X. and Hou, L., 2021. The association of traumatic brain injury, gut microbiota and the corresponding metabolites in mice. Brain research, 1762, p.147450.
51. Wojtukiewicz, M.Z., Rek, M.M., Karpowicz, K., Górska, M., Polityńska, B., Wojtukiewicz, A.M., Moniuszko, M., Radziwon, P., Tucker, S.C. and Honn, K.V., 2021. Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer and Metastasis Reviews, 40(3), pp.949-982.
52. Wang, L., Ray, A., Jiang, X., Wang, J.Y., Basu, S., Liu, X., Qian, T., He, R., Dittel, B.N. and Chu, Y., 2015. T regulatory cells and B cells cooperate to form a regulatory loop that maintains gut homeostasis and suppresses dextran sulfate sodium-induced colitis. Mucosal immunology, 8(6), pp.1297-1312.
53. Wong, S.H., Zhao, L., Zhang, X., Nakatsu, G., Han, J., Xu, W., Xiao, X., Kwong, T.N., Tsoi, H., Wu, W.K. and Zeng, B., 2017. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology, 153(6), pp.1621-1633.
54. Yang, H., Sun, L., Liu, M. and Mao, Y., 2018. Patient-derived organoids: A promising model for personalized cancer treatment. Gastroenterology report, 6(4), pp.243-245.
55. Zhong, L., Zhang, X. and Covasa, M., 2014. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World journal of gastroenterology: WJG, 20(24), p.7878.
56. Zawistowska-Rojek, A. and Tyski, S., 2022. How to Improve Health with Biological Agents—Narrative Review. Nutrients, 14(9), p.1700.
57. Zhang, Z., Kuo, J.C.T., Yao, S., Zhang, C., Khan, H. and Lee, R.J., 2021. CpG Oligodeoxynucleotides for Anticancer Monotherapy from Preclinical Stages to Clinical Trials. Pharmaceutics, 14(1), p.73.
58. Zhou, H., Yuan, Y., Wang, H., Xiang, W., Li, S., Zheng, H., Wen, Y., Ming, Y., Chen, L. and Zhou, J., 2021. Gut microbiota: A potential target for cancer interventions. Cancer Management and Research, pp.8281-8296.