Effect of Epidural Pulsed Radiofrequency with Neuro-Stimulation in Management of Thoracic Spinal Cord Injury

Main Article Content

Ali Aziz Ali Alhaffo
Mortada Jubara
Ghassan Faris Idan

Keywords

spinal cord injury, epidural pulsed radiofrequency, ASIA Impairment scale, modified functional reaching test, functional ambulatory category scale, Barthel index

Abstract

Background: Patients with spinal cord injury suffering from functional disability and reduced quality of life, in addition to conventional managements, many spinal cord researches try to develop effective repair treatment which can restore sensory and motor function to near-normal values, one of these new strategies is the neuromodulation
Objective: we aim to show the effect of spinal cord stimulation with epidural radiofrequency on improvement of trunk stability, mobility, standing, postural control, and assisted walking which will increase performance in activities of daily living (ADLs) .
Patients and Methods: we randomized 37 of chronic thoracic (T4_T10) spinal cord injuries of ASIA Impairment scale grade A(completes SCI) who are under conventional rehabilitation treatment to receive epidural pulsed radiofrequency and spinal cord stimulation and follow the improvement of sensory , motor function, trunk stability, assisted walk, and performance in activities of daily livings
(ADLs) using ASIA impairment scale, modified functional reaching test, functional ambulation category scale and Barthel index respectively.
Results: there were improvements of sense-motor function, trunk stability, assisted walk, performance function and quality of life after one year of treatment.
Conclusion: epidural pulsed radiofrequency and spinal neuro-stimulation combined with the conventional rehabilitation treatment showed significant advantage in improvement of neural activity, performance independency and quality of life.

Abstract 312 | pdf Downloads 354

References

1. Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain. 2014; 137(Pt 3):654-667. doi:10.1093/brain/awt262.
2. Choi EH, Gattas S, Brown NJ, et al. Epidural electrical stimulation for spinal cord injury. Neural Regen Res. 2021; 16(12):2367-
2375. doi:10.4103/1673-5374.313017.
3. Kumar R, Lim J, Mekary RA, et al. Traumatic Spinal Injury: Global Epidemiology and Worldwide Volume. World Neurosurg.2018;
113:e345-e363.
4. Chan BC, Cadarette SM, Wodchis WP, Krahn MD, Mittmann N. The lifetime cost of spinal cord injury in Ontario, Canada: A population-based study from the perspective of the public health care payer. J Spinal Cord Med. 2019; 42(2):184-193. doi:10.1080/10790268.2018.1486622
5. Cao Y, Chen Y, DeVivo MJ... Lifetime direct costs after spinal cord injury. Topics in Spinal Cord Injury and Rehabilitation 2011; 16:10-6.
6. Chen CL, Yeung KT, Bih LI, Wang CH, Chen MI, Chien JC. The relationship between sitting stability and functional performance in patients with paraplegia. Arch Phys Med Rehabil. 2003; 84(9):1276-1281. doi: 10.1016/s0003-9993(03)002.00-4.
7. Ragnarsson KT. Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord. 2008; 46(4):255-274. doi:10.1038/sj.sc.3102091.
8. Kakulas BA. Neuropathology: the foundation for new treatments in spinal cord injury. Spinal Cord. 2004; 42(10):549-563.
doi:10.1038/sj.sc.3101670.
9. Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017; 3:17018. Published 2017 Apr 27.
doi:10.1038/nrdp.2017.18.
10. Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967; 46(4):489-491.
11. Cook AW. Electrical stimulation in multiple sclerosis. Hosp Pract. 1976;11(4):51-58. doi:10.1080/21548331.1976.11706516.
12. Van de Crommert HW, Mulder T, Duysens J. Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture. 1998; 7(3):251-263. doi: 10.1016/s0966-6362(98)00010-1.
13. Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011; 377(9781):1938-1947. doi: 10.1016/S0140-
6736(11)60547-3.
14. Kakulas A. The applied neurobiology of human spinal cord injury: a review. Paraplegia. 1988; 26(6):371-379. doi:10.1038/sc.1988.57.
15. Peña Pino I, Hoover C, Venkatesh S, et al. LongTerm Spinal Cord Stimulation After Chronic Complete Spinal Cord Injury Enables Volitional Movement in the Absence of Stimulation. Front Syst Neurosci. 2020; 14:35. Published 2020 Jun 30. doi:10.3389/fnsys.2020.00035.
16. Formento E, Minassian K, Wagner F, et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat Neurosci. 2018; 21(12):1728 -1741. doi: 10.1038/s41593-018-0262-6.
17. Eisdorfer JT, Smit RD, Keefe KM, Lemay MA, Smith GM, Spence AJ. Epidural Electrical Stimulation: A Review of Plasticity Mechanisms
That Are Hypothesized to Underlie Enhanced Recovery From Spinal Cord Injury With Stimulation. Front Mol Neurosci. 2020; 13:163.
Published 2020 Sep 2. doi:10.3389/fnmol.2020.00163.
18. Flynn JR, Graham BA, Galea MP, Callister RJ. The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology. 2011; 60(5):809-822. doi:10.1016/j.neuropharm.2011.01.016.
19. Kirshblum SC, Burns SP, Biering-Sorensen F, et al. International standards for neurological classification of spinal cord injury (revised 2011).J Spinal Cord Med. 2011; 34(6):535-546. doi:10.1179/204577211X13207446293695.
20. Lynch SM, Leahy P, Barker SP. Reliability of measurements obtained with a modified functional reach test in subjects with spinal cord injury. Phys Ther. 1998;78(2):128-133.doi:10.1093/ptj/78.2.128.
21. Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of balance. J Gerontol. 1990; 45(6):M192-M197. doi:10.1093/geronj/45.6.m192
22. Wade DT. Measurement in neurological rehabilitation. Curr Opin Neurol Neurosurg. 1992; 5(5):682-686.
23. Mehrholz J, Wagner K, Rutte K, Meissner D, Pohl M. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. ArchPhys Med Rehabil.2007; 88(10):1314-1319.doi:10.1016/j.apmr.2007.06.764
24. Mahoney Fi, Barthel Dw. Functional Evaluation:The Barthel Index. Md State Med J. 1965;14:61-65.
25. Shah S, Vanclay F, Cooper B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J Clin Epidemiol. 1989; 42(8):703-
709. doi: 10.1016/0895-4356(89)90065-6.
26. Hossain MS, Harvey LA, Islam MS, et al. A community-based intervention to prevent serious complications and death 2 years after discharge in people with spinal cord injury in Bangladesh (CIVIC): a randomised trial. Spinal Cord. 2021; 59(6):649-658. doi:10.1038/s41393-020-00546-9
27. James ND, McMahon SB, Field-Fote EC, Bradbury EJ. Neuromodulation in the restoration of function after spinal cord injury. Lancet
Neurol. 2018; 17(10):905-917. doi:10.1016/S1474-4422(18)30287-4.
28. Tapias Pérez JH. Spinal cord stimulation: beyond pain management. Neurologia (Engl Ed). 2022; 37(7):586-595.
doi:10.1016/j.nrleng.2019.05.007.
29. Zariffa J, Kramer JL, Fawcett JW, et al. Characterization of neurological recovery following traumatic sensorimotor complete thoracic spinal cord injury. Spinal Cord. 2011; 49(3):463-471. doi:10.1038/sc.2010.140.
30. Aimetti AA, Kirshblum S, Curt A, Mobley J, Grossman RG, Guest JD. Natural history of neurological improvement following complete (AIS A) thoracic spinal cord injury across three registries to guide acute clinical trial design and interpretation. Spinal Cord. 2019; 57(9):753-762. doi: 10.1038/s41393-019-0299-8.
31. Butcher SJ, Craven BR, Chilibeck PD, Spink KS, Grona SL, Sprigings EJ. The effect of trunk stability training on vertical takeoff velocity. J Orthop Sports Phys Ther. 2007; 37(5):223-231.doi:10.2519/jospt.2007.2331.
32. Sliwinski MM, Akselrad G, Alla V, Buan V,Kaemmerlen E. Community exercise programing and its potential influence on quality of life and functional reach for individuals with spinal cord injury. J Spinal Cord Med. 2020; 43(3):358-363. doi:10.1080/10790268.2018.1543104.
33. Triolo RJ, Boggs L, Miller ME, Nemunaitis G,Nagy J, Bailey SN. Implanted electrical stimulation of the trunk for seated postural
stability and function after cervical spinal cord injury: a single case study. Arch Phys Med Rehabil. 2009; 90(2):340-347.
doi:10.1016/j.apmr.2008.07.029.
34. Smith AC, Angeli CA, Ugiliweneza B, et al. Spinal cord imaging markers and recovery of standing with epidural stimulation in individuals with clinically motor complete spinal cord injury. Exp Brain Res. 2022; 240(1):279-288. doi: 10.1007/s00221-021-06272-9.
35. Gupta A, Taly AB, Srivastava A, Vishal S, Murali T. Traumatic vs non-traumatic spinal cord lesions: comparison of neurological and
functional outcome after in-patient rehabilitation.Spinal Cord. 2008; 46(7):482-487.doi:10.1038/sj.sc.3102168.
36. Leveque JC, Villavicencio AT, Bulsara KR, Rubin L, Gorecki JP. Spinal cord stimulation for failed back surgery syndrome. Neuromodulation. 2001; 4(1):1-9. doi:10.1046/j.1525-1403.2001.00001.
37. Frey ME, Manchikanti L, Benyamin RM, Schultz DM, Smith HS, Cohen SP. Spinal cord stimulation for patients with failed back surgery
syndrome: a systematic review. Pain Physician. 2009; 12(2):379-397.
38. Shamji MF, Westwick HJ, Heary RF. Complications related to the use of spinal cord stimulation for managing persistent postoperative
neuropathic pain after lumbar spinal surgery.Neurosurg Focus. 2015; 39(4):E15. doi:10.3171/2015.7.FOCUS15260.