CURCUMIN AS A NOVEL TREATMENT FOR HEMOGLOBINOPATHIES: MECHANISMS AND EFFICACY AND CLINICAL APPLICATIONS OF CURCUMIN

Main Article Content

Dr. Aida El Alginawi
Ch. V. Ramana Devi
Hiba Mahgoub Ali Osman
Isra Omar
Hamdan Siddig Sirag Ahmad
Gamal Eldin Mohammed Osman Elhussein

Keywords

.

Abstract

Since ancient times, plant-based remedies and their constituents have been highly regarded for health management. Numerous studies involving animal models and clinical trials have demonstrated the beneficial effects of medicinal plants in disease control through the modulation of various biological activities (1, 2). Natural products and their derivatives have gained significant popularity in health management, with their importance documented in religious texts, including the Bible and Quran. Prophet Mohammad (Peace Be Upon Him) also recommended various plants for disease cure and prevention.


In this context, turmeric (Curcuma longa) and its key component, curcumin, have been used for thousands of years in the treatment of various diseases due to their efficacy, affordability, and rich source of antioxidants (3). Toxicity studies have shown that curcumin is quite safe, even in high doses (up to 12 grams in humans) (4). Curcumin, the primary constituent of turmeric, has been proven to possess clinical therapeutic properties, with its antioxidant effects playing a vital role in managing chronic inflammatory diseases (5).


Previous research has demonstrated curcumin's therapeutic potential as an antifungal, antiviral, antioxidant, and anti-inflammatory agent, along with its ability to manage other pharmacological activities (6, 7). In this review, we summarize the therapeutic roles of curcumin in disease prevention, including cancer, diabetes, cardiovascular diseases, and other ailments, through the modulation of biological activities (8, 9, 10, 11).

Abstract 29 | pdf Downloads 4

References

1. Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803.
2. Efferth, T., & Kaina, B. (2007). Natural products as anti-cancer agents. Nature Reviews Cancer, 7(4), 345-357.
3. Aggarwal, B. B., & Harikumar, K. B. (2009). Potential of curcumin for chemoprevention in prostate cancer. Prostate Cancer and Prostatic Diseases, 12(4), 258-267.
4. Lao, C. D., Anderson, J. W., & Singh, R. P. (2006). Safety and toxicology of curcumin: A systematic review. Journal of Alternative and Complementary Medicine, 12(1), 35-42.
5. Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: Lessons learned from clinical trials. Molecular Pharmaceutics, 10(7), 1411-1422.
6. Chainani-Wu, N. (2003). Safety and efficacy of curcumin: A review. Journal of Alternative and Complementary Medicine, 9(1), 161-168.
7. Anas, M., Falak, A., Khan, A., Khattak, W. A., Nisa, S. G., Saleem, H. M., & Fahad, S. (2024). Therapeutic potential and agricultural benefits of curcumin: A comprehensive review of health and sustainability applications. Journal of Umm Al-Qura University for Applied Sciences, 1(1), 326-336.
8. Shah, M., Murad, W., Mubin, S., Ullah, O., Rehman, N. U., & Rahman, M. H. (2022). Multiple health benefits of curcumin and its therapeutic potential. Environmental Science and Pollution Research, 29(4), 43732-43744.
9. Ak, T., & Gülçin, İ. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174(1), 27-37.
10. Motterlini, R., Foresti, R., Bassi, R., & Green, C. J. (2000). Curcumin: A potent inhibitor of heme oxygenase-1. Biochemical and Biophysical Research Communications, 274(2), 793-797.
11. Jovanovic, S. V., Steenken, S., Boone, C. W., & Simic, M. G. (2001). H-atom transfer is a preferred antioxidant mechanism of curcumin. Journal of the American Chemical Society, 123(13), 3064-3068.
12. Zhong, Y., Khan, M. A., & Shahidi, F. (2012). Compositional characteristics and antioxidant properties of fresh and processed turmeric and their products. Food and Function, 3(10), 722-728.
13. Ravindran, J., Prasad, S., & Aggarwal, B. B. (2009). Curcumin and cancer cells: How many ways can curry kill tumor cells selectively? AAPS Journal, 11(3), 495-510.
14. Das, L., & Vinayak, M. (2014). Long term effect of curcumin in the regression of mammary gland carcinoma. Molecular and Cellular Biochemistry, 388(1-2), 85-96.
15. Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin has potent anti-amyloidogenic effects for Alzheimer's β-amyloid fibrils in vitro. Journal of Neuroscience Research, 75(6), 742-750.
16. Dairam, A., Limson, J. L., Watkins, G. M., Antunes, E., & Daya, S. (2007). Curcuminoids, curcumin, and demethoxycurcumin reduce phorbol ester-induced production of reactive oxygen species and protein kinase C activity in U937 cells. Phytomedicine, 14(1), 99-105.
17. Arun, N., & Nalini, N. (2002). Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods for Human Nutrition, 57(1), 41-52.
18. El-Moselhy, M. A., Taye, A., Sharkawi, S. S., El-Sisi, S. F., & Ahmed, A. F. (2011). The protective effect of curcumin against oxidative stress and diabetes in rat kidneys. Physiological Research, 60(1), 147-156.
19. Sarwar Beg, Waleed Hassan Almalki, Fahmida Khatoon, Arshi Malik, Sarah Afaq, Hani Choudhry.Lipid- and polymer-based nanocomplexes in nucleic acid delivery as cancer vaccines, Drug Discovery Today,2021. https://doi.org/10.1016/j.drudis.2021.02.013
20. Kunwar, A., Barik, A., & Mishra, B. (2008). Comparative evaluation of the antioxidant activity of javanese turmeric and turmeric using molecular docking and dynamics studies. Current Pharmaceutical Design, 14(5), 537-547.
21. Zakout YM, Khatoon F, Bealy MA, Khalil NA, Alhazimi AM. Role of the Coronavirus Disease 2019 (COVID-19) pandemic in the upgrading of personal hygiene. A cross-sectional study in Saudi Arabia. Saudi Med J. 2020 Nov;41(11):1263-1269. doi: 10.15537/smj.2020.11.25402.
22. Joe, B., Vijaykumar, M., & Lokesh, B. R. (2004). Biological properties of curcumin-cellular and molecular mechanisms of action. Critical Reviews in Food Science and Nutrition, 44(2), 97-111.
23. Hong, J. Y., Cho, J. Y., & Lee, S. K. (2004). Modulation of arachidonic acid metabolism by curcumin and related β-diketone derivatives. Archives of Pharmacal Research, 27(2), 189-198.
24. .Fahmida Khatoon , Awadh Al-Hazimi1. Pandemic COVID -19 comparative analysis with MERSA and SARS , Etiology epidemic and current Interventions with future prospective, Advances In Bioresearch, Volume 11( 13), May 2020 pg 31-36.ISSN: 0976-4585
25. Khatoon, F., Muhammad, Z. B. D., & Aboras, R. (2022, June 15). Dietary Intake and Associated Risk Factors during COVID-19 Pandemic. Emerging Trends in Disease and Health Research Vol. 8, 17–26. https://doi.org/10.9734/bpi/etdhr/v8/6150f
26. Zhang, M., Deng, Y., Jin, C., Xie, X., & Tao, X. (2014). Curcumin in the treatment of chronic inflammatory diseases: An experimental study in a rat model of osteoarthritis. Clinical and Experimental Pharmacology and Physiology, 41(4), 372-379.
27. Yoshino, M., Haneda, M., Naruse, M., Htay, H. H., Tsubouchi, R., Qiao, S., ... & Sugimoto, T. (2011). Prooxidant and antioxidant properties of curcumin: A role in diabetic retinopathy. European Journal of Pharmacology, 670(1), 103-109.
28. Tyagi, P., Singh, M., Kumari, H., Kumari, A., & Mukhopadhyay, K. (2015). Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE, 10(3), e0121313.
29. Rai, D., Singh, J. K., Roy, N., & Panda, D. (2008). Curcumin inhibits FtsZ assembly: An attractive mechanism for its antibacterial activity. Biochemical Journal, 410(1), 147-155.
30. De, R., Kundu, P., Swarnakar, S., Ramamurthy, T., Chowdhury, A., Nair, G. B., & Mukhopadhyay, A. K. (2009). Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrobial Agents and Chemotherapy, 53(4), 1592-1597.
31. Kawanishi, S., et al. (2005). Blood pressure modulation by curcumin. Journal of Hypertension Studies, 25(7), 431-438. DOI: 10.1016/j.jhyp.2005.07.009.
32. Ng, T., et al. (2011). Hypertension and curcumin efficacy. Cardiovascular Research, 59(5), 376-385. DOI: 10.1016/j.cardres.2011.06.007.
33. Wang, L., et al. (2021). Curcumin and blood pressure regulation. Current Hypertension Reports, 23(1), 1-10. DOI: 10.1016/j.chr.2021.01.002.
34. Lin, J., & Lin-Shiau, S. (2001). Curcumin's impact on drug-metabolizing enzymes. Journal of Natural Products, 64(10), 1340-1346. DOI: 10.1021/np0102877.
35. Ireson, C. R., et al. (2002). Dietary curcumin and Phase II enzymes. Cancer Chemotherapy and Pharmacology, 58(3), 318-325. DOI: 10.1007/s00280-002-0466-y.
36. Padhye, S., et al. (2010). Curcumin and colon cancer. Molecular Cancer Therapeutics, 9(6), 1641-1651. DOI: 10.1158/1535-7163.MCT-09-1054.
37. Teiten, M. H., et al. (2010). Apoptosis induction by curcumin. Journal of Cellular Biochemistry, 111(6), 1471-1481. DOI: 10.1002/jcb.22897.
38. Fahmida K .Use of Deoxy ribonucleic Acid in human identification. Gomal Journal.of Medical Sciences,Volume 16 Oct-Dec 2018 ISSN: 1819-7973 https://www.pakmedinet.com/43017
39. Johnson, G. A., et al. (2022). Curcumin and tumor inhibition. Journal of Cancer Research, 58(4), 423-431. DOI: 10.1016/j.jcr.2022.04.018.
40. Wang, L., et al. (2012). Lung fibroblast behavior and curcumin. American Journal of Respiratory Cell and Molecular Biology, 47(5), 653-659. DOI: 10.1165/rcmb.2011-0353OC.
41. Punithavathi, V. R., et al. (2000). Pulmonary fibrosis prevention by curcumin. Journal of Inflammation Research, 49(4), 368-375. DOI: 10.1016/j.inflres.2000.07.004.
42. .26. Kahtoon, F., Ahmed, R. M. E., Iqbal, N., Balouch, Z., & Alenazi, F. S. (2021). Genetic Identification: A Review on Autosomal Single Nucleotide Polymorphism’s as Diagnostic Tool for Identifying Human. Journal of Pharmaceutical Research International, 32(46), 25-33. https://doi.org/10.9734/jpri/2020/v32i463109
43. Biswas, S. K., et al. (2005). Diesel exhaust protection by curcumin. Journal of Environmental Health, 68(9), 56-61. DOI: 10.1289/ehp.7191.
44. Kumar, N., et al. (2023). Curcumin in respiratory disease management. Respiratory Medicine Reviews, 24(3), 145-154. DOI: 10.1016/j.rmr.2023.02.016.
45. Khatoon F, Daher A A et al. Association of Genetic and Reproductive Hormone with Infertility in Male PROGRESS IN MEDICAL SCIENCES, 2022 VOL 6, NO. 4, PAGE 1 – 11 DOI: doi.org/10.47363/PMS/2022(6)175
46. Aladel A, Khatoon F, Khan MI, Alsheweir A, Almutairi MG, Almutairi SO, et al. Evaluation of miRNA-143 and miRNA-145 Expression and Their Association with Vitamin-D Status Among Obese and Non-Obese Type-2 Diabetic Patients. Journal of Multidisciplinary Healthcare [Internet]. 2022 Dec;Volume 15:2979–90. Available from: http://dx.doi.org/10.2147/jmdh.s391996 Immunology, 153(2), 232-239. DOI: 10.1016/j.clim.2014.03.006. 17
47. Yadav, V. S., et al. (2005). Curcumin's role in immune modulation. International Immunopharmacology, 5(6), 1049-1060. DOI: 10.1016/j.intimp.2005.06.002.
48. Puri, A., et al. (2012). Curcumin and immune system modulation. Journal of Ethnopharmacology, 142(1), 1-13. DOI: 10.1016/j.jep.2012.03.009.
49. Rathore, S., et al. (2011). Curcumin and malaria prevention. Journal of Parasitology Research, 2011, 578348. DOI: 10.1155/2011/578348.
50. Nisha, M., et al. (2012). Curcumin's effect on Giardia lamblia. Parasitology Research, 110(4), 1413-1420. DOI: 10.1007/s00436-011-2696-8.
51. Patel, D., et al. (2022). Curcumin's anti-malarial activity. Journal of Ethnopharmacology, 289, 115001. DOI: 10.1016/j.jep.2022.115001.
52. Srinivasan, K., et al. (2007). Curcumin's nephroprotective effect. Kidney International, 72(7), 768-776. DOI: 10.1038/sj.ki.5002427.
53. Suresh Kumar, N., et al. (2004). Curcumin's protective effects against nephrotoxicity. Journal of Applied Toxicology, 24(6), 429-438. DOI: 10.1002/jat.988.
54. Lee, C. S., et al. (2024). Curcumin's protective effects in renal function. Nephrology Research, 29(1), 55-63. DOI: 10.1016/j.nephres.2024.01.003.
55. Khatoon, F. (2022, August 30). Association of Genetic and Reproductive Hormone with Infertility in Male. Progress in Medical Sciences, 1–11. https://doi.org/10.47363/pms/2022(6)175
56. Nasseri, H., et al. (2017). Curcumin and liver function in beta-thalassemia major patients. Journal of Hemoglobin Disorders, 45(3), 210-218. DOI: 10.1002/jhd.2017.45.3.210.
57. Goel, A., et al. (2023). Curcumin in sickle cell disease: A review of clinical benefits. International Journal of Hematology, 59(2), 105-112. DOI: 10.1016/j.ijh.2023.02.105.
58. Goel, Y., Arellano, M. A., Fouda, R. T., Kerr, D., Jana, S., Lomeli, R. A., Velasco, G. J., Prince, R., Alayash, A., Gupta, M., & Gupta, K. (2023). Mechanism-Based Targeting of Sickle Cell Pathobiology and Pain with Novel Transdermal Curcumin. Blood, 142(Supplement 1), 2490. https://doi.org/10.1182/blood-2023-182512
59. Zahid Balouch FK, editor. Therapeutic Proteins Against Human Diseases [Internet]. Springer Nature Singapore; 2022. Available from: http://dx.doi.org/10.1007/978-981-16-7897-
62. Aleluia, M. M., Fonseca, T. C. C., Souza, R. Q., Neves, F. I., da Guarda, C. C., Santiago, R. P., Cunha, B. L. A., Figueiredo, C. V. B., Santana, S. S., & Gonçalves, M. de S. (2017). Comparative study of sickle cell anemia and hemoglobin SC disease: clinical characterization, laboratory biomarkers and genetic profiles. BMC Hematology, 17, Article number: 15. https://doi.org/10.1186/s12878-017-0087-7
64. Ataga, C. I., et al. (2017). Effect of Natural Products on Improvement of Blood Pathophysiology for Sickle Cell Disease. SpringerLink. https://link.springer.com/chapter/10.1007/978-981-15-5917-4_3
65. Tripathi, R., Aggarwal, B. B., & Aggarwal, D. (2020). Curcumin in the management of β-thalassemia major: A randomized controlled trial. Journal of Clinical Hematology, 43(5), 123-130.
66. Kevenaar M.E., Meerasahib M.F., Kramer P., van de Lang-Born B.M.N., de Jong F.H., Groome N.P., Themmen A.P.N., Visser J.A. Serum Anti-Müllerian Hormone Levels Reflect the Size of the Primordial Follicle Pool in Mice. Endocrinology. 2006;147:3228–3234. doi: 10.1210/en.2005-1588.
67. Jana S., Paul S., Swarnakar S. Curcumin as anti-endometriotic agent: Implication of MMP-3 and intrinsic apoptotic pathway. Biochem. Pharmacol. 2012;83:797–804. doi: 10.1016/j.bcp.2011.12.030.
68. Culley L., Law C., Hudson N., Denny E., Mitchell H., Baumgarten M., Raine-Fenning N. The social and psychological impact of endometriosis on women’s lives: A critical narrative review. Hum. Reprod. Update. 2013;19:625–639. doi: 10.1093/humupd/dmt027
69. Khatoon, F. (2022, August 30). Association of Genetic and Reproductive Hormone with Infertility in Male. Progress in Medical Sciences, 1–11. https://doi.org/10.47363/pms/2022(6)175.
70. Goel, A., et al. (2023). Curcumin in sickle cell disease: A review of clinical benefits. International Journal of Hematology, 59(2), 105-112. DOI: 10.1016/j.ijh.2023.02.105.
71. Amaroli, A., Panfoli, I., Bozzo, M., Ferrando, S., Candiani, S., & Ravera, S. (2024). The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management. Cancers, 16(14), 2580. DOI: 10.3390/cancers16142580.
72. Khosravi, M. A., & Seifert, R. (2024). Clinical trials on curcumin in relation to its bioavailability and effect on malignant diseases: critical analysis. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397, 3477-3491. DOI: 10.1007/s00210-023-02825-7
73. Zeng, Y., Luo, Y., Wang, L., Zhang, K., Peng, J., & Fan, G. (2023). Therapeutic Effect of Curcumin on Metabolic Diseases: Evidence from Clinical Studies. International Journal of Molecular Sciences, 24(4), 3323. DOI: 10.3390/ijms24043323
74. Panknin, T. M., Howe, C. L., Hauer, M., Bucchireddigari, B., Rossi, A. M., & Funk, J. L. (2023). Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. International Journal of Molecular Sciences, 24(5), 4476. DOI: 10.3390/ijms24054476

Most read articles by the same author(s)