EXPLORING INTRAVENOUS NTCP AS A NOVEL THERAPEUTIC STRATEGY TO SUPPRESS HEPATITIS B VIRUS ENTRY AND INFECTION
Main Article Content
Keywords
Hepatitis B virus, Liver Cirrhosis, Hepatocellular Carcinoma, NTCP, Immune Responses.
Abstract
Hepatitis B virus (HBV) is a major global health challenge, leading to chronic liver diseases, including cirrhosis and hepatocellular carcinoma. Current antiviral treatments are limited by the development of resistance and the inability to completely eradicate the virus. This research explored a novel antiviral strategy that leverages the sodium taurocholate co-transporting polypeptide (NTCP), the primary receptor for HBV entry into hepatocytes. The research focused on the intravenous administration of NTCP to block the virus from binding to liver cells, thereby reducing viral entry and suppressing infection in an experimental duck model. This research summarizes the key findings, mechanisms, and potential implications of this approach for HBV therapy.
References
2. European Association for the Study of the Liver (EASL). EASL clinical practice guidelines on the management of hepatitis B virus infection. J Hepatol. 2017; 67(2):370-98. doi:10.1016/j.jhep.2017.03.021.
3. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, et al. Sodium taurocholate cotransporting polypeptide as a functional receptor for hepatitis B virus. Nature. 2012;485(7397):386-9. doi:10.1038/nature11120.
4. Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. 2015;79(1):17-37. doi:10.1128/MMBR.00035-14.
5. Liu Y, Nie H, Zhang K, Qiu Z, Xu C, Li Y, et al. NTCP-mediated HBV infection and its potential as a therapeutic target. J Clin Invest. 2019;129(7):3065-79. doi:10.1172/JCI128793.
6. Revill P, Chisari FV, Block JM, Gehring AJ, Guo H, Levrero M, et al. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol Hepatol. 2021;6(5):379-92. doi:10.1016/S2468-1253(20)30277-0.
7. Nassal M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut. 2015;64(12):1972-84. doi:10.1136/gutjnl-2015-309809.
8. Watashi K, Wakita T. Hepatitis B virus and hepatitis D virus entry, species specificity, and tissue tropism. Cold Spring Harb Perspect Med. 2015;5(6):a021378. doi:10.1101/cshperspect.a021378.
9. Park JH, Lee JH, Kang SG, Jang YS. Understanding the role of sodium taurocholate cotransporting polypeptide (NTCP) in the context of hepatitis B virus (HBV) infection. Virology. 2016;497:208-12. doi:10.1016/j.virol.2016.07.027.
10. Schneider M, Rasquin A, Ottiger C, Stalder D, Bühler S, Käser T. Animal models in HBV research: bridging the gap towards HBV cure. Front Immunol. 2019;10:2128. doi:10.3389/fimmu.2019.02128.
11. Blank A, Markert C, Hohne M, et al. First-in-human application of Myrcludex B—a novel inhibitor of the NTCP receptor for HBV and HDV infection. J Hepatol. 2016;64(3):412-418.
12. Urban S, Schulze A, Dandri M, Petersen J. The role of sodium-dependent bile acid transporters in the pathogenesis of hepatitis B virus infection. J Hepatol. 2014;50(6):1041-1052.
13. Gish RG, Chang TT, Ma M, et al. RNA interference therapeutics for chronic hepatitis B virus infection: Results of a phase 2 trial. Hepatology. 2021;74(4):1063-1075.
14. Jiang B, Liu B, Gao X, et al. Toll-like receptor-based therapeutic vaccines for hepatitis B: Advances and challenges. Front Immunol. 2020;11:2065.
15. Bertoletti A, Kennedy PT. The immune response in hepatitis B virus infection: Implications for pathogenesis and therapy. Clin Microbiol Rev. 2018;31(2):e00081-17.