ADVANCES OF CRISPR CAS9 TECHNOLOGY FOR GENOME AND EPIGENOME EDITING
Main Article Content
Keywords
CRISPR/Cas9 technology, dCas-system, gene editing, epigenetics, chromatin
Abstract
The advent of CRISPR/Cas9 technology has revolutionized gene editing. Through diverse delivery methods, it has enabled effective gene editing across in vitro, ex vivo, and in vivo applications, thanks to ongoing advancements in the field. Viral vectors, despite their potential to trigger immune responses, limited cloning capacity, and risk of insertional mutagenesis, remain widely used in these systems. While chemical delivery methods still require extensive optimization to boost their efficiency for in vivo applications, physical delivery techniques are mostly confined to in vitro and ex vivo contexts. One of the most challenging aspects of gene editing remains developing a safe and effective in vivo delivery method for CRISPR/Cas9. CRISPR-Cas technology has also paved the way for a diverse range of molecular systems now widely used in research and increasingly in medical treatment. For instance, Cas proteins without nucleolytic activity—referred to as dead Cas proteins or dCas—can deliver functional cargo to specific, preselected genome locations. This review starts by examining the advantages and limitations of various physical methods for delivering Cas9. Next, it highlights key applications of CRISPR systems in epigenetic modifications. Finally, it explores the use of CRISPR-Cas9 technology in genome editing, with a particular focus on base editing and prime editing, along with its future prospects.
References
2. Belk, J. A., Yao, W., Ly, N., Freitas, K. A., Chen, Y. T., Shi, Q., Valencia, A. M., Shifrut, E., Kale, N., Yost, K. E., Duffy, C. V., Daniel, B., Hwee, M. A., Miao, Z., Ashworth, A., Mackall, C. L., Marson, A., Carnevale, J., Vardhana, S. A., & Satpathy, A. T. (2022). Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell, 40(7), 768-786.e767. https://doi.org/10.1016/j.ccell.2022.06.001
3. Bhattacharjee, G., Gohil, N., Siruka, D., Khambhati, K., Maurya, R., Ramakrishna, S., Chu, D. T., & Singh, V. (2023). CRISPR-dCas9 system for epigenetic editing towards therapeutic applications. Prog Mol Biol Transl Sci, 198, 15-24. https://doi.org/10.1016/bs.pmbts.2023.02.005
4. Bollen, Y., Post, J., Koo, B. K., & Snippert, H. J. G. (2018). How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Res, 46(13), 6435-6454. https://doi.org/10.1093/nar/gky571
5. Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D., & Platt, R. J. (2019). Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods, 16(9), 887-893. https://doi.org/10.1038/s41592-019-0508-6
6. Chen, E., Lin-Shiao, E., Trinidad, M., Saffari Doost, M., Colognori, D., & Doudna, J. A. (2022). Decorating chromatin for enhanced genome editing using CRISPR-Cas9. Proc Natl Acad Sci U S A, 119(49), e2204259119. https://doi.org/10.1073/pnas.2204259119
7. Chen, F., Alphonse, M., & Liu, Q. (2020). Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 12(3), e1609. https://doi.org/10.1002/wnan.1609
8. Choi, J. G., Dang, Y., Abraham, S., Ma, H., Zhang, J., Guo, H., Cai, Y., Mikkelsen, J. G., Wu, H., Shankar, P., & Manjunath, N. (2016). Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther, 23(7), 627-633. https://doi.org/10.1038/gt.2016.27
9. Dever, D. P., Bak, R. O., Reinisch, A., Camarena, J., Washington, G., Nicolas, C. E., Pavel-Dinu, M., Saxena, N., Wilkens, A. B., Mantri, S., Uchida, N., Hendel, A., Narla, A., Majeti, R., Weinberg, K. I., & Porteus, M. H. (2016). CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 539(7629), 384-389. https://doi.org/10.1038/nature20134
10. Devesa-Guerra, I., Morales-Ruiz, T., Pérez-Roldán, J., Parrilla-Doblas, J. T., Dorado-León, M., García-Ortiz, M. V., Ariza, R. R., & Roldán-Arjona, T. (2020). DNA Methylation Editing by CRISPR-guided Excision of 5-Methylcytosine. J Mol Biol, 432(7), 2204-2216. https://doi.org/10.1016/j.jmb.2020.02.007
11. Díaz-Olmos, Y., Batista, M., Ludwig, A., & Marchini, F. K. (2020). Characterising ISWI chromatin remodeler in Trypanosoma cruzi. Mem Inst Oswaldo Cruz, 115, e190457. https://doi.org/10.1590/0074-02760190457
12. Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096
13. Fei, J. F., Haffner, C., & Huttner, W. B. (2014). 3' UTR-dependent, miR-92-mediated restriction of Tis21 expression maintains asymmetric neural stem cell division to ensure proper neocortex size. Cell Rep, 7(2), 398-411. https://doi.org/10.1016/j.celrep.2014.03.033
14. Fei, J. F., Knapp, D., Schuez, M., Murawala, P., Zou, Y., Pal Singh, S., Drechsel, D., & Tanaka, E. M. (2016). Tissue- and time-directed electroporation of CAS9 protein-gRNA complexes in vivo yields efficient multigene knockout for studying gene function in regeneration. NPJ Regen Med, 1, 16002. https://doi.org/10.1038/npjregenmed.2016.2
15. Fu, Y., He, X., Gao, X. D., Li, F., Ge, S., Yang, Z., & Fan, X. (2023). Prime editing: current advances and therapeutic opportunities in human diseases. Sci Bull (Beijing), 68(24), 3278-3291. https://doi.org/10.1016/j.scib.2023.11.015
16. Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 551(7681), 464-471. https://doi.org/10.1038/nature24644
17. Grünewald, J., Zhou, R., Lareau, C. A., Garcia, S. P., Iyer, S., Miller, B. R., Langner, L. M., Hsu, J. Y., Aryee, M. J., & Joung, J. K. (2020). A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol, 38(7), 861-864. https://doi.org/10.1038/s41587-020-0535-y
18. Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. S., Wang, D. Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0
19. Hess, G. T., Frésard, L., Han, K., Lee, C. H., Li, A., Cimprich, K. A., Montgomery, S. B., & Bassik, M. C. (2016). Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods, 13(12), 1036-1042. https://doi.org/10.1038/nmeth.4038
20. Horii, T., Arai, Y., Yamazaki, M., Morita, S., Kimura, M., Itoh, M., Abe, Y., & Hatada, I. (2014). Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep, 4, 4513. https://doi.org/10.1038/srep04513
21. Hosfield, D. J., Mol, C. D., Shen, B., & Tainer, J. A. (1998). Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell, 95(1), 135-146. https://doi.org/10.1016/s0092-8674(00)81789-4
22. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. https://doi.org/10.1126/science.1225829
23. Jinek, M., Jiang, F., Taylor, D. W., Sternberg, S. H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K., Lin, S., Kaplan, M., Iavarone, A. T., Charpentier, E., Nogales, E., & Doudna, J. A. (2014). Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 343(6176), 1247997. https://doi.org/10.1126/science.1247997
24. Khorsandi, S. E., Bachellier, P., Weber, J. C., Greget, M., Jaeck, D., Zacharoulis, D., Rountas, C., Helmy, S., Helmy, A., Al-Waracky, M., Salama, H., Jiao, L., Nicholls, J., Davies, A. J., Levicar, N., Jensen, S., & Habib, N. (2008). Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human. Cancer Gene Ther, 15(4), 225-230. https://doi.org/10.1038/sj.cgt.7701119
25. Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J. S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res, 24(6), 1012-1019. https://doi.org/10.1101/gr.171322.113
26. Kleinstiver, B. P., Prew, M. S., Tsai, S. Q., Topkar, V. V., Nguyen, N. T., Zheng, Z., Gonzales, A. P., Li, Z., Peterson, R. T., Yeh, J. R., Aryee, M. J., & Joung, J. K. (2015). Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 523(7561), 481-485. https://doi.org/10.1038/nature14592
27. Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S., & Sternberg, S. H. (2019). Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature, 571(7764), 219-225. https://doi.org/10.1038/s41586-019-1323-z
28. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420-424. https://doi.org/10.1038/nature17946
29. Krokan, H. E., & Bjørås, M. (2013). Base excision repair. Cold Spring Harb Perspect Biol, 5(4), a012583. https://doi.org/10.1101/cshperspect.a012583
30. Kunz, C., Saito, Y., & Schär, P. (2009). DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci, 66(6), 1021-1038. https://doi.org/10.1007/s00018-009-8739-9
31. Lander, E. S. (2016). The Heroes of CRISPR. Cell, 164(1-2), 18-28. https://doi.org/10.1016/j.cell.2015.12.041
32. Lee, B., Lee, K., Panda, S., Gonzales-Rojas, R., Chong, A., Bugay, V., Park, H. M., Brenner, R., Murthy, N., & Lee, H. Y. (2018). Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng, 2(7), 497-507. https://doi.org/10.1038/s41551-018-0252-8
33. Lee, C. M., Cradick, T. J., & Bao, G. (2016). The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells. Mol Ther, 24(3), 645-654. https://doi.org/10.1038/mt.2016.8
34. Lee, K., Conboy, M., Park, H. M., Jiang, F., Kim, H. J., Dewitt, M. A., Mackley, V. A., Chang, K., Rao, A., Skinner, C., Shobha, T., Mehdipour, M., Liu, H., Huang, W. C., Lan, F., Bray, N. L., Li, S., Corn, J. E., Kataoka, K., . . . Murthy, N. (2017). Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng, 1, 889-901. https://doi.org/10.1038/s41551-017-0137-2
35. Lévy, R., Shaheen, U., Cesbron, Y., & Sée, V. (2010). Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev, 1. https://doi.org/10.3402/nano.v1i0.4889
36. Li, X., Huang, L., Pan, L., Wang, B., & Pan, L. (2021). CRISPR/dCas9-mediated epigenetic modification reveals differential regulation of histone acetylation on Aspergillus niger secondary metabolite. Microbiol Res, 245, 126694. https://doi.org/10.1016/j.micres.2020.126694
37. Liang, X., Potter, J., Kumar, S., Zou, Y., Quintanilla, R., Sridharan, M., Carte, J., Chen, W., Roark, N., Ranganathan, S., Ravinder, N., & Chesnut, J. D. (2015). Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol, 208, 44-53. https://doi.org/10.1016/j.jbiotec.2015.04.024
38. Liu, B., Chen, S., Rose, A., Chen, D., Cao, F., Zwinderman, M., Kiemel, D., Aïssi, M., Dekker, F. J., & Haisma, H. J. (2020). Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing. Nucleic Acids Res, 48(2), 517-532. https://doi.org/10.1093/nar/gkz1136
39. Liu, B. Y., He, X. Y., Xu, C., Xu, L., Ai, S. L., Cheng, S. X., & Zhuo, R. X. (2018). A Dual-Targeting Delivery System for Effective Genome Editing and In Situ Detecting Related Protein Expression in Edited Cells. Biomacromolecules, 19(7), 2957-2968. https://doi.org/10.1021/acs.biomac.8b00511
40. Liu, F., Song, Y., & Liu, D. (1999). Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther, 6(7), 1258-1266. https://doi.org/10.1038/sj.gt.3300947
41. Liu, P., Chen, M., Liu, Y., Qi, L. S., & Ding, S. (2018). CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency. Cell Stem Cell, 22(2), 252-261.e254. https://doi.org/10.1016/j.stem.2017.12.001
42. Long, C., McAnally, J. R., Shelton, J. M., Mireault, A. A., Bassel-Duby, R., & Olson, E. N. (2014). Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science, 345(6201), 1184-1188. https://doi.org/10.1126/science.1254445
43. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., & Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648), 251-260. https://doi.org/10.1038/38444
44. Ma, H., Tu, L. C., Naseri, A., Huisman, M., Zhang, S., Grunwald, D., & Pederson, T. (2016). Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol, 34(5), 528-530. https://doi.org/10.1038/nbt.3526
45. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823-826. https://doi.org/10.1126/science.1232033
46. Mamcarz, E., Zhou, S., Lockey, T., Abdelsamed, H., Cross, S. J., Kang, G., Ma, Z., Condori, J., Dowdy, J., Triplett, B., Li, C., Maron, G., Aldave Becerra, J. C., Church, J. A., Dokmeci, E., Love, J. T., da Matta Ain, A. C., van der Watt, H., Tang, X., . . . Sorrentino, B. P. (2019). Lentiviral Gene Therapy Combined with Low-Dose Busulfan in Infants with SCID-X1. N Engl J Med, 380(16), 1525-1534. https://doi.org/10.1056/NEJMoa1815408
47. Mattapally, S., Pawlik, K. M., Fast, V. G., Zumaquero, E., Lund, F. E., Randall, T. D., Townes, T. M., & Zhang, J. (2018). Human Leukocyte Antigen Class I and II Knockout Human Induced Pluripotent Stem Cell-Derived Cells: Universal Donor for Cell Therapy. J Am Heart Assoc, 7(23), e010239. https://doi.org/10.1161/jaha.118.010239
48. McDonald, J. I., Celik, H., Rois, L. E., Fishberger, G., Fowler, T., Rees, R., Kramer, A., Martens, A., Edwards, J. R., & Challen, G. A. (2016). Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open, 5(6), 866-874. https://doi.org/10.1242/bio.019067
49. Mout, R., Ray, M., Yesilbag Tonga, G., Lee, Y. W., Tay, T., Sasaki, K., & Rotello, V. M. (2017). Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing. ACS Nano, 11(3), 2452-2458. https://doi.org/10.1021/acsnano.6b07600
50. Müller, M., Lee, C. M., Gasiunas, G., Davis, T. H., Cradick, T. J., Siksnys, V., Bao, G., Cathomen, T., & Mussolino, C. (2016). Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome. Mol Ther, 24(3), 636-644. https://doi.org/10.1038/mt.2015.218
51. Nakamura, M., Gao, Y., Dominguez, A. A., & Qi, L. S. (2021). CRISPR technologies for precise epigenome editing. Nat Cell Biol, 23(1), 11-22. https://doi.org/10.1038/s41556-020-00620-7
52. Nelles, D. A., Fang, M. Y., O'Connell, M. R., Xu, J. L., Markmiller, S. J., Doudna, J. A., & Yeo, G. W. (2016). Programmable RNA Tracking in Live Cells with CRISPR/Cas9. Cell, 165(2), 488-496. https://doi.org/10.1016/j.cell.2016.02.054
53. Park, H., Shin, J., Kim, Y., Saito, T., Saido, T. C., & Kim, J. (2022). CRISPR/dCas9-Dnmt3a-mediated targeted DNA methylation of APP rescues brain pathology in a mouse model of Alzheimer's disease. Transl Neurodegener, 11(1), 41. https://doi.org/10.1186/s40035-022-00314-0
54. Porto, E. M., Komor, A. C., Slaymaker, I. M., & Yeo, G. W. (2020). Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov, 19(12), 839-859. https://doi.org/10.1038/s41573-020-0084-6
55. Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173-1183. https://doi.org/10.1016/j.cell.2013.02.022
56. Qiao, J., Sun, W., Lin, S., Jin, R., Ma, L., & Liu, Y. (2019). Cytosolic delivery of CRISPR/Cas9 ribonucleoproteins for genome editing using chitosan-coated red fluorescent protein. Chem Commun (Camb), 55(32), 4707-4710. https://doi.org/10.1039/c9cc00010k
57. Qiu, X. Y., Zhu, L. Y., Zhu, C. S., Ma, J. X., Hou, T., Wu, X. M., Xie, S. S., Min, L., Tan, D. A., Zhang, D. Y., & Zhu, L. (2018). Highly Effective and Low-Cost MicroRNA Detection with CRISPR-Cas9. ACS Synth Biol, 7(3), 807-813. https://doi.org/10.1021/acssynbio.7b00446
58. Ramakrishna, S., Kwaku Dad, A. B., Beloor, J., Gopalappa, R., Lee, S. K., & Kim, H. (2014). Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res, 24(6), 1020-1027. https://doi.org/10.1101/gr.171264.113
59. Romero, Z., DeWitt, M., & Walters, M. C. (2018). Promise of gene therapy to treat sickle cell disease. Expert Opin Biol Ther, 18(11), 1123-1136. https://doi.org/10.1080/14712598.2018.1536119
60. Sakata, R. C., Ishiguro, S., Mori, H., Tanaka, M., Tatsuno, K., Ueda, H., Yamamoto, S., Seki, M., Masuyama, N., Nishida, K., Nishimasu, H., Arakawa, K., Kondo, A., Nureki, O., Tomita, M., Aburatani, H., & Yachie, N. (2020). Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol, 38(7), 865-869. https://doi.org/10.1038/s41587-020-0509-0
61. Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 32(4), 347-355. https://doi.org/10.1038/nbt.2842
62. Savić, N., & Schwank, G. (2016). Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res, 168, 15-21. https://doi.org/10.1016/j.trsl.2015.09.008
63. Shi, J., Yang, X., Li, Y., Wang, D., Liu, W., Zhang, Z., Liu, J., & Zhang, K. (2020). MicroRNA-responsive release of Cas9/sgRNA from DNA nanoflower for cytosolic protein delivery and enhanced genome editing. Biomaterials, 256, 120221. https://doi.org/10.1016/j.biomaterials.2020.120221
64. Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41-45. https://doi.org/10.1038/47412
65. Strecker, J., Ladha, A., Gardner, Z., Schmid-Burgk, J. L., Makarova, K. S., Koonin, E. V., & Zhang, F. (2019). RNA-guided DNA insertion with CRISPR-associated transposases. Science, 365(6448), 48-53. https://doi.org/10.1126/science.aax9181
66. Suda, T., & Liu, D. (2007). Hydrodynamic gene delivery: its principles and applications. Mol Ther, 15(12), 2063-2069. https://doi.org/10.1038/sj.mt.6300314
67. Sun, W., Ji, W., Hall, J. M., Hu, Q., Wang, C., Beisel, C. L., & Gu, Z. (2015). Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl, 54(41), 12029-12033. https://doi.org/10.1002/anie.201506030
68. Sun, W., Lu, Y., & Gu, Z. (2015). Rolling circle replication for engineering drug delivery carriers. Ther Deliv, 6(7), 765-768. https://doi.org/10.4155/tde.15.27
69. Syding, L. A., Nickl, P., Kasparek, P., & Sedlacek, R. (2020). CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells, 9(4). https://doi.org/10.3390/cells9040993
70. Tang, W., & Liu, D. R. (2018). Rewritable multi-event analog recording in bacterial and mammalian cells. Science, 360(6385). https://doi.org/10.1126/science.aap8992
71. Tao, Y., Yi, K., Hu, H., Shao, D., & Li, M. (2021). Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing. J Mater Chem B, 9(1), 94-100. https://doi.org/10.1039/d0tb01925a
72. Tebas, P., Stein, D., Tang, W. W., Frank, I., Wang, S. Q., Lee, G., Spratt, S. K., Surosky, R. T., Giedlin, M. A., Nichol, G., Holmes, M. C., Gregory, P. D., Ando, D. G., Kalos, M., Collman, R. G., Binder-Scholl, G., Plesa, G., Hwang, W. T., Levine, B. L., & June, C. H. (2014). Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med, 370(10), 901-910. https://doi.org/10.1056/NEJMoa1300662
73. Thummel, R., Bai, S., Sarras, M. P., Jr., Song, P., McDermott, J., Brewer, J., Perry, M., Zhang, X., Hyde, D. R., & Godwin, A. R. (2006). Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev Dyn, 235(2), 336-346. https://doi.org/10.1002/dvdy.20630
74. Vojta, A., Dobrinić, P., Tadić, V., Bočkor, L., Korać, P., Julg, B., Klasić, M., & Zoldoš, V. (2016). Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res, 44(12), 5615-5628. https://doi.org/10.1093/nar/gkw159
75. Wang, P., Zhang, L., Zheng, W., Cong, L., Guo, Z., Xie, Y., Wang, L., Tang, R., Feng, Q., Hamada, Y., Gonda, K., Hu, Z., Wu, X., & Jiang, X. (2018). Thermo-triggered Release of CRISPR-Cas9 System by Lipid-Encapsulated Gold Nanoparticles for Tumor Therapy. Angew Chem Int Ed Engl, 57(6), 1491-1496. https://doi.org/10.1002/anie.201708689
76. Wei, M., Yuan, J., Liu, Y., Fu, T., Yu, X., & Zhang, Z. J. (2020). Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China. Jama, 323(13), 1313-1314. https://doi.org/10.1001/jama.2020.2131
77. Willyard, C. (2017). The epigenome editors: How tools such as CRISPR offer new details about epigenetics. Nat Med, 23(8), 900-903. https://doi.org/10.1038/nm0817-900
78. Wu, X., Kriz, A. J., & Sharp, P. A. (2014). Target specificity of the CRISPR-Cas9 system. Quant Biol, 2(2), 59-70. https://doi.org/10.1007/s40484-014-0030-x
79. Xu, X., Tao, Y., Gao, X., Zhang, L., Li, X., Zou, W., Ruan, K., Wang, F., Xu, G. L., & Hu, R. (2016). A CRISPR-based approach for targeted DNA demethylation. Cell Discov, 2, 16009. https://doi.org/10.1038/celldisc.2016.9
80. Yang, H., Wang, H., Shivalila, C. S., Cheng, A. W., Shi, L., & Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154(6), 1370-1379. https://doi.org/10.1016/j.cell.2013.08.022
81. Yang, L., Zhang, X., Wang, L., Yin, S., Zhu, B., Xie, L., Duan, Q., Hu, H., Zheng, R., Wei, Y., Peng, L., Han, H., Zhang, J., Qiu, W., Geng, H., Siwko, S., Zhang, X., Liu, M., & Li, D. (2018). Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell, 9(9), 814-819. https://doi.org/10.1007/s13238-018-0568-x
82. Yang, X. C., Samanta, B., Agasti, S. S., Jeong, Y., Zhu, Z. J., Rana, S., Miranda, O. R., & Rotello, V. M. (2011). Drug delivery using nanoparticle-stabilized nanocapsules. Angew Chem Int Ed Engl, 50(2), 477-481. https://doi.org/10.1002/anie.201005662
83. Yin, H., Song, C. Q., Suresh, S., Wu, Q., Walsh, S., Rhym, L. H., Mintzer, E., Bolukbasi, M. F., Zhu, L. J., Kauffman, K., Mou, H., Oberholzer, A., Ding, J., Kwan, S. Y., Bogorad, R. L., Zatsepin, T., Koteliansky, V., Wolfe, S. A., Xue, W., . . . Anderson, D. G. (2017). Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol, 35(12), 1179-1187. https://doi.org/10.1038/nbt.4005
84. Yin, H., Xue, W., Chen, S., Bogorad, R. L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P. A., Jacks, T., & Anderson, D. G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol, 32(6), 551-553. https://doi.org/10.1038/nbt.2884
85. Yin, L., Song, Z., Kim, K. H., Zheng, N., Tang, H., Lu, H., Gabrielson, N., & Cheng, J. (2013). Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. Biomaterials, 34(9), 2340-2349. https://doi.org/10.1016/j.biomaterials.2012.11.064
86. You, L., Tong, R., Li, M., Liu, Y., Xue, J., & Lu, Y. (2019). Advancements and Obstacles of CRISPR-Cas9 Technology in Translational Research. Mol Ther Methods Clin Dev, 13, 359-370. https://doi.org/10.1016/j.omtm.2019.02.008
87. Yu, H., Wang, J., Lackford, B., Bennett, B., Li, J. L., & Hu, G. (2021). INO80 promotes H2A.Z occupancy to regulate cell fate transition in pluripotent stem cells. Nucleic Acids Res, 49(12), 6739-6755. https://doi.org/10.1093/nar/gkab476
88. Zeng, J., Tang, S. Y., Toh, L. L., & Wang, S. (2017). Generation of "Off-the-Shelf" Natural Killer Cells from Peripheral Blood Cell-Derived Induced Pluripotent Stem Cells. Stem Cell Reports, 9(6), 1796-1812. https://doi.org/10.1016/j.stemcr.2017.10.020
89. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., & Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163(3), 759-771. https://doi.org/10.1016/j.cell.2015.09.038
90. Zhang, X., Zhu, B., Chen, L., Xie, L., Yu, W., Wang, Y., Li, L., Yin, S., Yang, L., Hu, H., Han, H., Li, Y., Wang, L., Chen, G., Ma, X., Geng, H., Huang, W., Pang, X., Yang, Z., . . . Li, D. (2020). Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol, 38(7), 856-860. https://doi.org/10.1038/s41587-020-0527-y
91. Zhang, Y., Qian, L., Wei, W., Wang, Y., Wang, B., Lin, P., Liu, W., Xu, L., Li, X., Liu, D., Cheng, S., Li, J., Ye, Y., Li, H., Zhang, X., Dong, Y., Zhao, X., Liu, C., Zhang, H. M., . . . Lou, C. (2017). Paired Design of dCas9 as a Systematic Platform for the Detection of Featured Nucleic Acid Sequences in Pathogenic Strains. ACS Synth Biol, 6(2), 211-216. https://doi.org/10.1021/acssynbio.6b00215
92. Zhao, W., Xu, Y., Wang, Y., Gao, D., King, J., Xu, Y., & Liang, F. S. (2021). Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Sci Rep, 11(1), 15912. https://doi.org/10.1038/s41598-021-95398-5
93. Zhen, S., Hua, L., Liu, Y. H., Gao, L. C., Fu, J., Wan, D. Y., Dong, L. H., Song, H. F., & Gao, X. (2015). Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther, 22(5), 404-412. https://doi.org/10.1038/gt.2015.2