BIOTECHNOLOGICAL ADVANCES IN AMYLASE PRODUCTION FROM ASPERGILLUS NIGER FOR POTENTIAL INDUSTRIAL APPLICATIONS

Main Article Content

Vaishnavi Devtadeen Dubey
Dr. Anubha Khare
Dr. Amita Thakur
Dr. Kalpana Dabhade

Keywords

Amylase, Aspergillus niger, solid-state fermentation, enzyme production, food industry, textile industry

Abstract

The growing demand for efficient and sustainable enzyme production has sparked interest in microbial sources, particularly for industrial applications. Amylases are vital enzymes in modern biotechnology, with applications spanning pharmaceutical, food, and textile industries. Among the various sources of amylase, microbial production, particularly from Aspergillus niger, has proven to be the most efficient for industrial use. This study highlights biotechnological advances in amylase production through solid-state fermentation (SSF) using wheat bran as a substrate. A strain of Aspergillus niger isolated from soil was selected for its superior enzyme production, with maximum yields observed after 4 to 5 days of incubation at 40°C and pH 7.0. Key factors such as incubation time, temperature, pH, and substrate concentration were optimized to enhance the enzyme yield. Soluble starch was added which boosted amylase production. Lowry method was used to confirm the protein concentration after ammonium sulfate precipitation and dialysis were used to purify the amylase. With strong activity over a broad pH range (4.0–7.0) and temperature range (30–42 °C), the partially purified enzyme is appropriate for a number of industrial applications. These results highlight the possibility of A. niger amylase as an affordable and environmentally friendly option for use in textiles, starch processing, and other industries that need thermostable enzymes. The current study offers viable path for increasing the production of microbial amylase and providing economical and sustainable answers to industrial requirements.

Abstract 56 | PDF Downloads 10

References

1. Allan S., Henrik B.F. Recombinant alpha-amylase mutants and their use in textile desizing, starch liquefaction, and washing. Int. Appl. 1997; 12: 205–210.
2. Alva S., Anupama J., Savla J., Chiu Y.Y., Vyshali P., Shruti M., Varalakshmi K.N. Production and characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in solid-state culture. Afr. J. Biotechnol. 2007; 6(5): 576.
3. Archana S., Tulasi S. Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca²⁺-independent α-amylases by Bacillus acidicola. J. Biosci. Bioeng. 2011; 111(5): 550–553.
4. Gunam B.W., et al. IOP Conference Series: Earth and Environmental Science. 2021; 913: 012041.
5. Bruinenberg P.M., Hulst A.C., Faber A., Voogd R.H. A process for surface sizing or coating of paper. Eur. Pat. Appl. 1996.
6. Cairns T.C., Nai C., Meyer V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal. Biol. Biotechnol. 2018; 5: 1–14.
7. Cairns T.C., Barthel L., Meyer V. Something old, something new: Challenges and developments in Aspergillus niger biotechnology. Essays Biochem. 2021; 65(2): 213–224.
8. Cavaco-Paulo A., Gübitz G.M., editors. Textile processing with enzymes. Vol. 29. Elsevier; 2003.
9. Cherry H.M., Towhid H., Anwar M.N. Extracellular amylase from the isolate Aspergillus fumigatus. Pak. J. Biol. Sci. 2004; 7(11): 1988–1992.
10. Couto S.R., Sanromán M.A. Application of solid-state fermentation to the food industry: A review. J. Food Eng. 2006; 76: 291–302.
11. Damien M., Joly C., Dole P., Bliard C. Enhanced mechanical properties of partially beta-amylase trimmed starch for material application. Carbohydr. Polym. 2010; 80(3): 747–752.
12. de Souza P.M., de Oliveira Magalhães P. Application of microbial α-amylase in industry: A review. Braz. J. Microbiol. 2010; 41(4): 850–861.
13. Elyasi Far B., Ahmadi Y., Yari Khosroshahi A., Dilmaghani A. Microbial alpha-amylase production: Progress, challenges, and perspectives. Adv. Pharm. Bull. 2020; 10(3): 350–358.
14. Feitkenhauer H. Anaerobic digestion of desizing wastewater: Influence of pre-treatment and anionic surfactant on degradation and intermediate accumulation. Enzyme Microb. Technol. 2003; 33: 250–258.
15. Gurumurthy D.M., Neelagund S.E. Molecular characterization of industrially viable extreme thermostable novel alpha-amylase of Geobacillus sp. Iso5 isolated from geothermal spring. J. Pure Appl. Microbiol. 2012; 6(4): 1759–1773.
16. Hmidet N., El-Hadj Ali N., Haddar A., Kanoun S., Alya S., Nasri M. Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as a detergent additive. Biochem. Eng. J. 2009; 47: 71–79.
17. Ismail A.M., Omar S.H., El-Aassar S.A., Gouda M.K. Purification of alpha-amylase from Bacillus lentus cultures. Appl. Microbiol. Biotechnol. 1992; 38(3): 312–314.
18. Karnwal A., Nigam V. Production of amylase enzyme by isolated microorganisms and its application. Int. J. Pharma. Bio. Sci. 2013; 3(4): 354–360.
19. Kirk O., Borchert T.V., Fuglsang C.C.. Industrial enzyme applications. Curr Opin Biotechnol. 2002; 13: 345–351.
20. Kövilein A, Kubisch C, Cai L, Ochsenreither K. Malic acid production from renewables: A review. J Chem Technol Biotechnol. 2020; 95: 513–526.
21. Laothanachareon T., Bunterngsook B., Champreda V. Profiling multi-enzyme activities of Aspergillus niger strains growing on various agro-industrial residues. 3 Biotech. 2022; 12(1): 17.
22. Li Y., Niu D., Zhang L., Wang Z., Shi G. Purification, characterization, and cloning of a thermotolerant isoamylase produced from Bacillus sp. CICIM 304. J. Ind. Microbiol. Biotechnol. 2013; 40: 437–446. https://doi.org/10.1007/s10295-013-1249-7.
23. Lundkvist H., Olsen H.S. Enzyme applications in bread making. Biozoom. 2007; (4): Novozymes.
24. Marc J.E.C., van der Maarel M.J.E., van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 2002; 94: 137-155.
25. Meyer V. Metabolic Engineering of Filamentous Fungi. In: Metabolic Engineering: Concepts and Applications. 1st ed. Wiley-VCH GmbH; 2021. (In press).
26. Mirasol S., Takashi E., Ritsuha O. Improvement of detergency of laundry bleach composition and bleaching method. J. Chem. Eng. 1997; 25: 1-7.
27. Mitidieri S., Souza Martinelli A.H., Schrank A., Vainstein M.H. Enzymatic detergent formulation containing amylase from Aspergillus niger: A comparative study with commercial detergent formulations. Bioresour. Technol. 2006; 97: 1217–1224.
28. Moreira F.G., Lenartovicz V., de Souza C.G.M., Ramos E.P., Peralta R.M.. The use of α-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp. in solid-state and submerged fermentations. Braz. J. Microbiol. 2001; 32: 15-19.
29. Michelena V.V., Castillo F.J. Production of amylase by Aspergillus foetidus on rice flour medium and characterization of the enzyme. J. Appl. Bacteriol. 1984; 56(3): 395-407.
30. Mahmood S., Shahid M., Nadeem M., Irfan M., Syed Q.. Production and optimization of α-amylase from Aspergillus niger using potato peel as substrate. Pak. J. Agric. Sci. 2016; 13: 101-109.
31. Moreira F.G, Lima F.A.D., Pedrinho S.R.F., Lenartovicz V, de Souza CGM, Peralta RM. Production of amylases by Aspergillus tamarii. Rev. Microbiol. 1999; 30: 157-162.
32. Nielsen J.E., Borchert T.V. Protein engineering of bacterial alpha-amylases. Biochim Biophys. Acta. 2000; 1543: 253-274.
33. Nimisha P., Moksha S., Gangawane A.K. Amylase activity of starch-degrading bacteria isolated from soil. Int. J. Curr. Microbiol. Appl. Sci. 2019; 8(4): 659-671.
34. Okolo B.N., Ezeogu L.I., Ebisike C.O. Raw starch digesting amylase from Thermoactinomyces thalophilus. J.Microbial. Biotechnol. 1996; 12: 637-638.
35. Onzales M.A. Laundry detergent bar composition with bleach system stabilized by enzymes. Adv. Appl. Biotechnol. 1997; 9: 110-115.
36. Pandey A., Nigam P., Soccol C.R., Soccol V.T., Singh D., Mohan R. Advances in microbial amylases. Biotechnol. Appl. Biochem. 2000; 31: 135-152.
37. Pedersen H., Nielsen J. The influence of nitrogen sources on the α-amylase productivity of Aspergillus oryzae in continuous cultures. Appl. Microbiol. Biotechnol. 2000; 53: 278–281.
38. Ramasamy S., Benazir J.F., Ramalingam S., Kumar R., Hari A., Raman N., Nidhiya K., Lakshmi R. Amylase production by Aspergillus niger under solid-state fermentation using agroindustrial wastes. Int. J. Eng. Sci. Technol. 2011; 3(8): 5841-5847.
39. Rao N., Jadhav S., Suryawanshi P., Dandekar P. Enzymatic processing of food starches: an overview. Food Bioprocess Technol. 2020; 13: 659-678.
40. Sheela J.Mary, Divya K., Premina S., Amylase production by Aspergillus niger and Penicillium species by Solid-state and Submerged cultivation using two food Industrial wastes. Nature Environment and Pollution Technology. 2021; (20); 1127- 1135.
41. Singh D., Lata K., Yadav S. Production and partial characterization of α-amylase from Bacillus subtilis isolated from kitchen waste. J. Biol. Sci. 2007; 7(5): 810-814.
42. Stathopoulos C., Kourkoutas Y., Aivalakis G., Koutinas A.A., Kanellaki M, Soccol C.R. (2009) Co-cultivation of molds and yeast in solid-state fermentation for the production of food enzymes. Food Bioprocess Technol.; 2(4): 424-431.
43. Sousa F., Nascimento A., Dantas N., De Souza Gomes A., Silva P., Bezerra J., Oliveira T., da Silva A. Optimization of α-amylase production by Aspergillus oryzae through solid-state fermentation. Appl. Biochem. Biotechnol. 2012; 168: 1940-1949.
44. Vasil'eva L.V., Deeva V., Shagimardanova E. Effect of nutrition on amylase activity and amylolytic bacteria in soil. Eurasian Soil Sci. 2005; 38: 208-216.
45. Vasil’ev L.V., Nader N. Alpha-amylase: its role in the plant and food industries. In: Chavan RB, editor. Modern Agriculture and Food Technology. Springer; 2021. p. 67–80.
46. Vasil'ev L.V., Nader N. The application of α-amylase in the food industry: an overview. In: Louloudi M, editor. Food Industry Applications of Enzymes. Springer; 2023. p. 35-49.
47. Yang Y., Zhang X., Zhang H., Zhang D., Zhang H. Isolation and characterization of a novel α-amylase from Geobacillus stearothermophilus. Process Biochem. 2021; 107: 62-70.
48. Zamani A., Largani Z., Davoodzadeh Z. Determination of the influence of different carbon and nitrogen sources on amylase production by Aspergillus oryzae. J. Food Sci. Technol. 2021; 58(9): 3354-3361
49. Zhang Y., Zhang Z., Wu Q., Hu Y., Zhang H. Purification and characterization of a novel α-amylase from Bacillus licheniformis. J Biotechnol. 2015; 204: 22-28.