GREEN ANALYTICAL CHEMISTRY: SUSTAINABLE APPROACHES FOR SAMPLE PREPARATION AND METHOD DEVELOPMENT

Main Article Content

Parmar Pradipkumar Vinubhai
Prasanth Katakam
Dr.Rani Rajput

Keywords

Green chemistry, Supercritical Fluid Extraction, Solid-Phase Microextraction, Ultra-High-Performance Liquid Chromatography, Resolution

Abstract

Background: Green analytical chemistry is concerned with cutting or minimizing the quantities of hazardous materials used and produced in analytical work via advancements in chemical procedures, methods, or techniques
Aim: This research aims to quantify efficiency to determine which analytical tool is the most efficient in solvent use, time, recovery rate, and environmental friendliness among the above-listed tools. 
Methods: The efficiency was measured for several factors including solvent use, time, recovery percentage, and effects on the environment for three sample preparation techniques. MAE used 5 mL solvent; SFE and SPME no solvent was used. Comparisons were made in terms of performance with the assessment of recovery rate. For chromatography, solvent volume, analysis time, resolution, and sustainability performance of UHPLC and HPLC were evaluated. In using UHPLC, 1 mL of solvent and 5 minutes per analysis were applied, while HPLC used 10 mL of solvent and took 20 minutes. 
Results: According to the findings of the study, SPME exhibited the highest recovery rate of 92%, less time (15 minutes), and low environmental impact. Compared with the HPLC, the UHPLC had lower solvent demands, shorter analysis time (5 vs 20 min), better resolution (1.5 vs 1.2), and less impact on the environment.  
Conclusion: Solid phase microextraction (SPME) was the most effective and energy-saving sample preparation method, and ultra-high-performance liquid chromatography (UHPLC) was the best chromatographic method as it was faster, more efficient, and environmentally friendly.
Abstract 117 | PDF Downloads 48

References

1. El Hosry L, Sok N, Richa R, Al Mashtoub L, Cayot P, Bou-Maroun E. Sample Preparation and Analytical Techniques in the Determination of Trace Elements in Food: A Review. Foods. 2023 Feb 20;12(4):895. doi: 10.3390/foods12040895. PMID: 36832970; PMCID: PMC9956155.
2. Parr RM. Technical Considerations for Sampling and Sample Preparation of Biomedical Samples for Trace Element Analysis. J Res Natl Bur Stand (1977). 1986 Mar-Apr;91(2):51-57. doi: 10.6028/jres.091.010. PMID: 34345066; PMCID: PMC6658442.
3. Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE-Analytical GREEnness Metric Approach and Software. Anal Chem. 2020 Jul 21;92(14):10076-10082. doi: 10.1021/acs.analchem.0c01887. Epub 2020 Jun 30. PMID: 32538619; PMCID: PMC7588019.
4. Tobiszewski M, Mechlińska A, Namieśnik J. Green analytical chemistry--theory and practice. Chem Soc Rev. 2010 Aug;39(8):2869-78. doi: 10.1039/b926439f. Epub 2010 May 26. PMID: 20502819.
5. Elbasiouny H, Darwesh M, Elbeltagy H, Abo-Alhamd FG, Amer AA, Elsegaiy MA, Khattab IA, Elsharawy EA, Ebehiry F, El-Ramady H, Brevik EC. Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: a review. Environ Monit Assess. 2021 Jun 26;193(7):449. doi: 10.1007/s10661-021-09236-2. Erratum in: Environ Monit Assess. 2021 Jul 31;193(8):542. doi: 10.1007/s10661-021-09345-y. PMID: 34173877; PMCID: PMC8233605.
6. Yabré M, Ferey L, Somé IT, Gaudin K. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules. 2018 May 2;23(5):1065. doi: 10.3390/molecules23051065. PMID: 29724076; PMCID: PMC6100308.
7. Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE-Analytical GREEnness Metric Approach and Software. Anal Chem. 2020 Jul 21;92(14):10076-10082. doi: 10.1021/acs.analchem.0c01887. Epub 2020 Jun 30. PMID: 32538619; PMCID: PMC7588019.
8. Öztürk Er E, Dalgıç Bozyiğit G, Büyükpınar Ç, Bakırdere S. Magnetic Nanoparticles Based Solid Phase Extraction Methods for the Determination of Trace Elements. Crit Rev Anal Chem. 2022;52(2):231-249. doi: 10.1080/10408347.2020.1797465. Epub 2020 Jul 26. PMID: 32715777.
9. El Deeb S. Enhancing Sustainable Analytical Chemistry in Liquid Chromatography: Guideline for Transferring Classical High-Performance Liquid Chromatography and Ultra-High-Pressure Liquid Chromatography Methods into Greener, Bluer, and Whiter Methods. Molecules. 2024 Jul 5;29(13):3205. doi: 10.3390/molecules29133205. PMID: 38999157; PMCID: PMC11243568.
10. Câmara JS, Perestrelo R, Berenguer CV, Andrade CFP, Gomes TM, Olayanju B, Kabir A, M R Rocha C, Teixeira JA, Pereira JAM. Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules. 2022 May 6;27(9):2953. doi: 10.3390/molecules27092953. PMID: 35566315; PMCID: PMC9101692.
11. Chen M, Wen SS, Wang R, Ren QX, Guo CW, Li P, Gao W. Advanced Development of Supercritical Fluid Chromatography in Herbal Medicine Analysis. Molecules. 2022 Jun 29;27(13):4159. doi: 10.3390/molecules27134159. PMID: 35807405; PMCID: PMC9268462.
12. Baruti ET, Kindenge JM, Issa IY, Amani MB, Bankiantima EN, Kadima JN, Djangeing’a RM. Transfer, validation, and application of HPLC analytical method for simultaneous determination of paracetamol and diclofenac in tablets. Int J Res Biol Pharm. 2021;7(3):1-5. doi: 10.53555/bp.v7i3.1548.
13. Munusamy R, Hephzibah K, Shanmugasundharam S. Green analytical HPLC method development of acyclovir loaded floating raft formulation in spiked rabbit plasma. Int J Drug Deliv Technol. 2024;14(1):338-344. doi: 10.25258/ijddt.14.1.48.
14. Aly AA, Górecki T. Green Approaches to Sample Preparation Based on Extraction Techniques. Molecules. 2020 Apr 9;25(7):1719. doi: 10.3390/molecules25071719. PMID: 32283595; PMCID: PMC7180442.
15. Peña-Pereira F, Tobiszewski M. The application of green solvents in separation processes. Green Chem. 2017;19(17):4023-32.
16. Namieśnik J. Green analytical chemistry – some remarks. J Sep Sci. 2001;24(2):151-3. doi: 10.1002/1615-9314(20010201)24:2<151::AID-JSSC151>3.0.CO;2-4.
17. Turner C. Sustainable analytical chemistry—more than just being green. Pure Appl Chem. 2013;85(10): 10.1351/pac-con-13-02-05.
18. Dispas A, Lebrun P, Sassiat P, Ziemons E, Thiébaut D, Vial J, et al. Innovative green supercritical fluid chromatography development for the determination of polar compounds. J Chromatogr A. 2012;1256:253-60. doi: 10.1016/j.chroma.2012.07.043.
19. Kadadou D, Tizani L, Alsafar H, Hasan SW. Analytical methods for determining environmental contaminants of concern in water and wastewater. MethodsX. 2024 Jan 24;12:102582. doi: 10.1016/j.mex.2024.102582. PMID: 38357632; PMCID: PMC10864661.
20. Behnoush B, Sheikhazadi A, Bazmi E, Fattahi A, Sheikhazadi E, Saberi Anary SH. Comparison of UHPLC and HPLC in benzodiazepines analysis of postmortem samples: a case-control study. Medicine (Baltimore). 2015 Apr;94(14):e640. doi: 10.1097/MD.0000000000000640. PMID: 25860209; PMCID: PMC4554044.
21. Aly AA, Górecki T. Green Approaches to Sample Preparation Based on Extraction Techniques. Molecules. 2020 Apr 9;25(7):1719. doi: 10.3390/molecules25071719. PMID: 32283595; PMCID: PMC7180442.
22. Sharma P, Verma R, Sharma PK, Sharma J. Analytical methods development and validation of combination of two drugs by RP high-performance liquid chromatography. Int J Res Biol Pharm. 2023;9(5):1-7. doi: 10.53555/bp.v9i5.2351.
23. Patel D, Patel K, Patel K, Patel C. Green analytical chemistry: an overview. World J Pharm Pharm Sci. 2024;13:419-429. doi: 10.20959/wjpps20248-27938.
24. Pooja M, Murkute S, Paresh M, Patil H, Gajanan S, Sananp, Nakul M, Kathar P, Aishwarya M, Pimple P, Murkute P. A review on high-performance liquid chromatography (HPLC). 2023;97.

Most read articles by the same author(s)