ADVANCING DRUG INNOVATION: THE ROLE OF NOVEL DRUG DELIVERY SYSTEMS IN RESEARCH AND DEVELOPMENT

Main Article Content

Muslim Bin Aqeel
Nimrah Farooq
Muhammad Adnan
Talat Iqbal
Muneer Ahmad
Shimal Asher
Areeba Ghaffar
Mohammad Ahsan Iqbal
Abdullah Rasool Butt

Keywords

novel drug delivery system;, targeting technology, carrier, nanotechnology, three-dimensional printing (3DP) technology

Abstract

The rising demand for improved therapeutic outcomes and minimized side effects in the pharmaceutical sector has spurred a new wave of innovation and research in novel drug delivery systems. These systems aim to overcome the limitations of traditional drug administration methods, such as short half-life, poor targeting, low solubility, and bioavailability. As the fields of pharmacy, materials science, and biomedicine advance and intersect, the focus on developing efficient and safe drug delivery systems, including biopharmaceutical formulations, has grown significantly both nationally and internationally. This article provides an overview of the latest advancements in drug delivery systems, categorized into four key areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, according to their primary objectives and methodologies. Furthermore, it critically examines the technological barriers, current research challenges, and future trends in the application of novel drug delivery systems.


 

Abstract 226 | pdf Downloads 75

References

1. Vargason, A.M., Anselmo, A.C., & Mitragotri, S. (2021). The evolution of commercial drug delivery technologies. Nature Biomedical Engineering, 5(10), 951–967. https://doi.org/10.1038/s41551-021-00763-6
2. Enrique, N., Alberto, O., Antonio, J., Bravo, I., & Alonso-Moreno, C. (2021). Polyester polymeric nanoparticles as platforms in the development of novel nanomedicines for cancer treatment. Cancers, 13(13), 3387. https://doi.org/10.3390/cancers13133387
3. Huang, P., Wang, X., Liang, X., Yang, J., Zhang, C.N., Kong, D.L., & Wang, W.W. (2019). Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomaterialia, 85, 1–26. https://doi.org/10.1016/j.actbio.2018.12.027
4. Su, X., Cao, Y., Liu, Y., Ouyang, B.S., Ning, B., Wang, Y., Guo, H.S., Pang, Z.Q., & Shen, S. (2021). Localized disruption of redox homeostasis boosting ferroptosis of tumor by hydrogel delivery system. Materials Today Bio, 12, 100154. https://doi.org/10.1016/j.mtbio.2021.100154
5. Abolfazl, A., Rogaie, R., Soodabeh, D., Joo, S.W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8, 102. https://doi.org/10.1186/1556-276X-8-102
6. Jesorka, A., & Orwar, O. (2008). Liposomes: Technologies and analytical applications. Annual Review of Analytical Chemistry, 1, 801–832. https://doi.org/10.1146/annurev.anchem.1.031207.112905
7. Kisak, E.T., Coldren, B., Evans, C.A., Boyer, C., & Zasadzinski, J.A. (2004). The vesosome—A multicompartment drug delivery vehicle. Current Medicinal Chemistry, 11(2), 199–219. https://doi.org/10.2174/0929867043364948
8. Lian, T., & Ho, J. (2001). Trends and developments in liposome drug delivery systems. Journal of Pharmaceutical Sciences, 90(5), 667–680. https://doi.org/10.1002/jps.10351
9. Peyman, A., Ahmad, M., Nahid, S., & Abastabar, M. (2021). Nanoliposome-loaded antifungal drugs for dermal administration: A review. Current Medical Mycology, 7(2), 71–78. https://doi.org/10.18502/cmm.7.2.5435
10. Francian, A., Widmer, A., Olsson, T., Ramirez, M., Heald, D., Rasic, K., Adams, L., Martinson, H., & Kullberg, M. (2021). Delivery of toll-like receptor agonists by complement C3-targeted liposomes activates immune cells and reduces tumor growth. Journal of Drug Targeting, 29(7), 754–760. https://doi.org/10.1080/1061186X.2021.1907355
11. Park, S.J. (2020). Protein-nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles. International Journal of Nanomedicine, 15, 5783–5802. https://doi.org/10.2147/IJN.S256029
12. Yu, B., Goel, S., Ni, D.L., Ellison, P.A., Siamof, C.M., Jiang, D.W., Cheng, L., Kang, L., Yu, F.Q., Liu, Z., et al. (2018). Reassembly of 89Zr-labeled cancer cell membranes into multicompartment membrane derived liposomes for PET-trackable tumor-targeted theranostics. Advanced Materials, 30(10), 1704–1734. https://doi.org/10.1002/adma.201705435
13. Jose, S., Anju, S.S., Cinu, T.A., Aleykutty, N.A., Thomas, S., & Souto, E.B. (2014). In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. International Journal of Pharmaceutics, 474(1–2), 6–13. https://doi.org/10.1016/j.ijpharm.2014.07.046
14. Zhao, Y., Hou, X.X., Chai, J.S., Zhang, Z.Z., Xue, X., Huang, F., Liu, J.F., Shi, L.Q., & Liu, Y. (2022). Stapled liposomes enhance cross-priming of radio-immunotherapy. Advanced Materials, 34(8), 2107–2121. https://doi.org/10.1002/adma.202104974
15. Wu, T.Y., Gong, Y.C., Li, Z.L., Li, Y.P., & Xiong, X.Y. (2020). Application of nanoparticle-based co-delivery strategies for cancer therapy. Materials Reports, 34, 516–522. https://doi.org/10.1016/j.matrep.2020.09.008
16. Bo, R.N., Dai, X.R., Huang, J., Wei, S.M., Liu, M.J., & Li, J.G. (2020). Evaluation of optimum conditions for decoquinate nanoliposomes and their anticoccidial efficacy against diclazuril-resistant Eimeria tenella infections in broilers. Veterinary Parasitology, 283, 109186. https://doi.org/10.1016/j.vetpar.2020.109186
17. Lakkadwala, S., Rodrigues, B.D., Sun, C.W., & Singh, J. (2019). Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma. Journal of Controlled Release, 307, 247–260. https://doi.org/10.1016/j.jconrel.2019.06.013
18. Sanjeet, B. (2023). WHO’s global tuberculosis report 2022. The Lancet Microbe, 4(2), e20. https://doi.org/10.1016/S2666-5247(22)00013-1
19. Ferraz-Carvalho, R.S., Pereira, M.A., Linhares, L.A., Lira-Nogueira, M.C.B., Cavalcanti, I.M.F., Santos-Magalhaes, N.S., & Montenegro, L.M.L. (2016). Effects of the encapsulation of usnic acid into liposomes and interactions with antituberculous agents against multidrug-resistant tuberculosis clinical isolates. Memórias do Instituto Oswaldo Cruz, 111(5), 330–334. https://doi.org/10.1590/0074-02760160085
20. Ambati, S., Pham, T., Lewis, Z.A., Lin, X., & Meagher, R.B. (2021). DC-SIGN targets amphotericin B-loaded liposomes to diverse pathogenic fungi. Fungal Biology and Biotechnology, 8, 22. https://doi.org/10.1186/s40694-021-00136-7
21. Cheng, Q., Wei, T., Farbiak, L., Johnson, L.T., Dilliard, S.A., & Siegwart, D.J. (2020). Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nature Nanotechnology, 15(4), 313–320. https://doi.org/10.1038/s41565-020-0676-8
22. Wang, X., Liu, S., Sun, Y.H., Yu, X.L., Lee, S.M., Cheng, Q., Wei, T., Gong, J.Y., Robinson, J., Zhang, D., et al. (2023). Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nature Protocols, 18(1), 265–291. https://doi.org/10.1038/s41596-022-00654-2
23. Liu, S., Cheng, Q., Wei, T., Yu, X.L., Johnson, L.T., Farbiak, L., & Siegwart, D.J. (2023). Design principles and components of organ-specific SORT LNPs for mRNA delivery to the liver, heart, kidney, and lung. Advanced Drug Delivery Reviews, 179, 114056. https://doi.org/10.1016/j.addr.2022.114056
24. Raza, A., Hayat, U., Rasheed, T., Bilal, M., Iqbal, H.M.N., & Asghar, M.A. (2022). pH-sensitive nanocarriers in drug delivery: From synthesis to clinical applications. Nanomaterials, 12(5), 961. https://doi.org/10.3390/nano12050961
25. Zhang, C., Wang, J., Deng, X., Shen, L., Zhang, J., Hou, Y., & Shi, Y. (2020). Enzyme-sensitive liposomes for anticancer drug delivery. Asian Journal of Pharmaceutical Sciences, 15(4), 400–414. https://doi.org/10.1016/j.ajps.2020.04.009
26. Taneja, G., Sud, S., & Bijjem, K.R.V. (2021). Liposomal drug delivery systems—A comprehensive review. International Journal of Pharmaceutical Sciences and Research, 12(5), 2156–2171. https://doi.org/10.13040/IJPSR.0975-8232.12(5).2156-71
27. Al-Jamal, W.T., Al-Jamal, K.T., Bomans, P.H.H., Frederik, P.M., Kostarelos, K., & Kostarelos, K. (2009). Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small, 5(11), 1406–1415. https://doi.org/10.1002/smll.200900189
28. You, J.O., Auguste, D.T., & Kabanov, A.V. (2008). Synthesis and drug delivery. Nature Reviews Drug Discovery, 7(12), 1093–1094. https://doi.org/10.1038/nrd2731
29. Haque, S., & Whittaker, M.R. (2020). Nanoformulations for the treatment of neurodegenerative disorders. Nano Today, 35, 100946. https://doi.org/10.1016/j.nantod.2020.100946
30. Roney, C., Kulkarni, P., Arora, V., Antich, P., Bonte, F., Wu, A., & Mallikarjuana, N.N. (2005). Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. Journal of Controlled Release, 108(2–3), 193–214. https://doi.org/10.1016/j.jconrel.2005.07.034
31. Smith, R.A., & Porteous, C.M. (2008). GMP and clinical trials—What are the requirements for investigational new drug (IND) applications? Therapeutic Innovation & Regulatory Science, 42(5), 494–502. https://doi.org/10.1177/009286150804200506
32. Avramescu, R.G., Bedwell, D.M., Farin, F.M., Wong, E.S., Keeling, K.M., & Lopes-Pacheco, M. (2023). Combination therapies for cystic fibrosis lung disease: Improving current treatments for the future. Frontiers in Pharmacology, 14, 1038. https://doi.org/10.3389/fphar.2023.1038
33. Torabizadeh, S., Sajjadi, M., Alizadeh, A.M., & Shamsasenjan, K. (2018). Comprehensive review on mesenchymal stem cell growth conditions: The Good Manufacturing Practice requirements and their application in cell therapy. Stem Cell Reviews and Reports, 14(5), 833–848. https://doi.org/10.1007/s12015-018-9823-1
34. Bangham, A.D., Horne, R.W., & Glauert, A.M. (1962). Action of saponin on biological cell membranes. Nature, 196, 952–955. https://doi.org/10.1038/196952a0
35. Fenton, O.S., Olafson, K.N., Pillai, P.S., Mitchell, M.J., Langer, R., & Mitragotri, S. (2018). Immunotherapy applications of non-viral nanoparticles. Advanced Drug Delivery Reviews, 114, 240–255. https://doi.org/10.1016/j.addr.2017.05.008
36. Moon, J.J., Huang, B., Irvine, D.J., & Moon, J.J. (2012). Engineering nano- and microparticles to tune immunity. Advanced Materials, 24(28), 3724–3746. https://doi.org/10.1002/adma.201200446
37. Bobo, D., Robinson, K.J., Islam, J., Thurecht, K.J., & Corrie, S.R. (2016). Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33(10), 2373–2387. https://doi.org/10.1007/s11095-016-1958-5
38. Anselmo, A.C., & Mitragotri, S. (2016). Nanoparticles in the clinic: An update. Bioengineering & Translational Medicine, 1(1), 10–29. https://doi.org/10.1002/btm2.10003
39. Hrkach, J., Von Hoff, D., Mukkaram Ali, M., Andrianova, E., Auer, J., Campbell, T., De Witt, D., Figa, M., Figueiredo, M., Horhota, A., et al. (2012). Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Science Translational Medicine, 4(128), 128ra39. https://doi.org/10.1126/scitranslmed.3003651
40. Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V., & Langer, R. (1994). Biodegradable long-circulating polymeric nanospheres. Science, 263(5153), 1600–1603. https://doi.org/10.1126/science.8128245
41. Ernsting, M.J., Murakami, M., Roy, A., Li, S.D., & Ernsting, M.J. (2013). Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. Journal of Controlled Release, 172(3), 782–794. https://doi.org/10.1016/j.jconrel.2013.09.013
42. Jain, R.K., Stylianopoulos, T., & Munn, L.L. (2014). Lessons from physics: Understanding the biology of intratumoral transport for improved cancer drug delivery. Nature Reviews Clinical Oncology, 12(7), 385–390. https://doi.org/10.1038/nrclinonc.2015.83
43. Stylianopoulos, T., Martin, J.D., Chauhan, V.P., Jain, S.R., Diop-Frimpong, B., Bardeesy, N., Smith, B.L., Ferrone, C.R., Hornicek, F.J., Boucher, Y., et al. (2012). Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proceedings of the National Academy of Sciences, 109(38), 15101–15108. https://doi.org/10.1073/pnas.1213353109
44. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387
45. Davis, M.E., Chen, Z.G., & Shin, D.M. (2008). Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Reviews Drug Discovery, 7(9), 771–782. https://doi.org/10.1038/nrd2614
46. Parveen, S., Sahoo, S.K., & Sahoo, S.K. (2008). Nanomedicine: Clinical applications of polyethylene glycol conjugated proteins and drugs. Clinical Pharmacokinetics, 47(1), 3–7. https://doi.org/10.2165/00003088-200847010-00002
47. Jokerst, J.V., Lobovkina, T., Zare, R.N., & Gambhir, S.S. (2011). Nanoparticle PEGylation for imaging and therapy. Nanomedicine (London, England), 6(4), 715–728. https://doi.org/10.2217/nnm.11.19
48. Allen, T.M., & Cullis, P.R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
49. Torchilin, V.P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4(2), 145–160. https://doi.org/10.1038/nrd1632
50. Gabizon, A., Shmeeda, H., & Barenholz, Y. (2003). Pharmacokinetics of pegylated liposomal Doxorubicin: Review of animal and human studies. Clinical Pharmacokinetics, 42(5), 419–436. https://doi.org/10.2165/00003088-200342050-00002
51. Goren, D., Horowitz, A.T., Tzemach, D., Tarshish, M., Zalipsky, S., & Gabizon, A. (2000). Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clinical Cancer Research, 6(5), 1949–1957. https://clincancerres.aacrjournals.org/content/6/5/1949.long
52. Barenholz, Y. (2012). Doxil®—The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160(2), 117–134. https://doi.org/10.1016/j.jconrel.2012.03.020
53. Park, K. (2007). Synthesis and functionalization of silica nanoparticles for targeted drug delivery. Applications of Nanoscience in Drug Delivery, 1(1), 57–69. https://doi.org/10.1201/9781420003443.ch4
54. Foy, S.P., Manthe, R.L., Foy, S.T., Dimitrijevic, S., & Krishnamurthy, N. (2010). Lab-on-a-chip compatibility and synchronous impedance monitoring of porous silicon photonic crystal particles during electrokinetic trapping and transport. Electrophoresis, 31(5), 828–835. https://doi.org/10.1002/elps.200900427
55. He, S.; Zhang, L.; Bai, S.; Yang, H.; Cui, Z.; Zhang, X.; Li, Y. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. Eur. Polym. J. 2021, 143, 110179.
56. Hemmati, K.; Masoumi, A.; Ghaemy, M. Tragacanth gum-based nanogel as a superparamagnetic molecularly imprinted polymer for quercetin recognition and controlled release. Carbohydr. Polym. 2016, 136, 630–640.
57. Kim, K.S.; Suzuki, K.; Cho, H.; Youn, Y.S.; Bae, Y.H. Oral nanoparticles exhibit specific high-efficiency intestinal uptake and lymphatic transport. ACS Nano 2018, 12, 8893–8900.
58. Kaur, J.; Mishra, V.; Singh, S.K.; Gulati, M.; Kapoor, B.; Chellappan, D.K.; Gupta, G.; Dureja, H.; Anand, K.; Dua, K.; et al. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J. Control. Release 2021, 334, 64–95.
55. Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021, 332, 312–336.
56. Hwang, D.; Ramsey, D.; Kabanov, V. Polymeric micelles for the delivery of poorly soluble drugs: From nano-formulation to clinical approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118.
57. Owens, E.; Peppasn, A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93–102.
58. Albayaty, Y.N.; Thomas, N.; Ramirez-Garcia, P.D.; Davis, T.P.; Quinn, J.F.; Whittaker, M.R.; Prestidge, C.A. pH-Responsive copolymer micelles to enhance itraconazole efficacy against Candida albicans biofilms. J. Mater. Chem. 2020, 8, 1672–1681.
59. Mitchell, D.; Ronghui, Q. Polymer micelles for the protection and delivery of specialized proresolving mediators. Eur. J. Pharm. Biopharma. 2023, 184, 159–169.
60. Zhang, X.; Xu, X.Y.; Wang, X.Y.; Lin, Y.J.; Zheng, Y.L.; Xu, W.; Liu, J.; Xu, W. Hepatoma-targeting and reactive oxygen species-responsive chitosan-based polymeric micelles for delivery of celastrol. Carbohydr. Polym. 2023, 303, 120439.
61. Zhang, C.; Nance, E.A.; Mastorakos, P.; Chisholm, J.; Berry, S.; Eberhart, C.; Tyler, B.; Brem, H.; Suk, J.S.; Hanes, J. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. J. Control. Release 2017, 263, 112–119.
62. Hu, Q.Y.; Gao, X.L.; Gu, G.Z.; Rang, T.; Tu, Y.F.; Liu, Z.Y.; Song, Q.X.; Yao, L.; Pang, Z.Q.; Jiang, X.G.; et al. Glioma therapy using tumor homing and penetrating peptide-functionalized PEG-PLA nanoparticles loaded with paclitaxel. Biomaterials 2013, 34, 5640–5650.
63. Zeng, L.J.; Zou, L.L.; Yu, H.J.; He, X.Y.; Cao, H.Q.; Zhang, Z.W.; Yin, Q.; Zhang, P.C.; Gu, W.W.; Chen, L.L.; et al. Treatment of malignant brain tumor by tumor-triggered programmed wormlike micelles with precise targeting and deep penetration. Adv. Funct. Mater. 2016, 26, 4201–4212.
64. Yu, L.L.; Bao, H.C. Research on the application of micelles in traditional Chinese medicine preparations. Shandong Chem. Ind. 2018, 47, 58–60.
65. Gao, W.W.; Zhang, Y.; Zhang, Q.Z.; Zhang, L.F. Nanoparticle-hydrogel: A hybrid biomaterial system for localized drug delivery. Ann. Biomed. Eng. 2016, 44, 2049–2061.
66. Wang, Y.F.; Chen, W.; Wang, Z.; Zhu, Y.; Zhao, H.X.; Wu, K.; Wu, J.; Zhang, W.H.; Zhang, Q.; Guo, H.Q.; et al. NIR-II light powered asymmetric hydrogel nanomotors for enhanced immunochemotherapy. Angew. Chem. Int. Ed. Engl. 2023, 62, e202212866.
67. Li, S.S.; Li, X.Y.; Xu, Y.D.; Fan, C.R.; Li, Z.A.; Zheng, L.; Luo, B.C.; Li, Z.P.; Lin, B.F.; Zha, Z.G.; et al. Collagen fibril-like injectable hydrogels from self-assembled nanoparticles for promoting wound healing. Bioact. Mater. 2024, 32, 149–163.
68. Sun, L.L.; Shen, F.Y.; Tian, L.L.; Tao, H.Q.; Xiong, Z.J.; Xu, J.; Liu, Z. ATP-responsive smart hydrogel releasing immune adjuvants synchronized with repeated chemotherapy or radiotherapy to boost antitumor immunity. Adv. Mater. 2021, 33, e2007910.
69. Gao, Y.; Ji, H.; Peng, L.; Gao, X.; Jiang, S. Development of PLGA-PEG-PLGA hydrogel delivery system for enhanced immuno-reaction and efficacy of newcastle disease virus DNA vaccine. Molecules 2020, 25, 2505.
70. Shang, L.; Liu, J.; Wu, Y.T.; Wang, M.; Fei, C.Z.; Liu, Y.C.; Xue, F.Q.; Zhang, L.F.; Gu, F. Peptide supramolecular hydrogels with sustained Release Ability for Combating Multidrug-Resistant Bacteria. ACS Appl. Mater. Interfaces 2023, 15, 26273–26284.
71. Azad, A.; Al-Mahmood, S.M.A.; Chatterjee, B.; Sulaiman, W.M.A.W.; Elsayed, T.M.; Doolaanea, A. Encapsulation of black seed oil in alginate beads as a pH-sensitive carrier for intestine-targeted drug delivery: In vitro, in vivo and ex vivo study. Pharmaceutics 2020, 12, 219.
72. Li, J.; Liu, W.; Wang, J.; Li, J.; Liu, M.; Bo, R. Application prospect of new drug delivery system for oral administration. Prog. Vet. Med. 2023, 44, 121–126.
73. Adapun, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules 2021, 26, 5905.
74. Ding, H.T.; Tan, P.; Fu, S.Q.; Tian, X.H.; Zhang, H.; Ma, X.L.; Gu, Z.W.; Luo, K. Preparation and application of pH-responsive drug delivery systems. J. Control. Release 2022, 348, 206–238.
75. Alshehri, S.; Imam, S.S.; Rizwanullah, M.; Akhter, S.; Mahdi, W.; Kazi, M.; Ahmad, J. Progress of cancer nanotechnology as diagnostics, therapeutics, and theranostics nanomedicine: Preclinical promise and translational challenges. Pharmaceutics 2020, 13, 24.
76. Zhao, L.P.; Zheng, R.R.; Liu, L.S.; Chen, X.Y.; Guan, R.; Yang, N.; Chen, A.; Yu, X.Y.; Cheng, H.; Li, S.Y. Self-delivery oxidative stress amplifier for chemotherapy sensitized immunotherapy. Biomaterials 2021, 275, 120970.
77. Gong, X.J.; Zhang, Q.Y.; Gao, Y.F.; Shuang, S.M.; Choi, M.M.F.; Dong, C. Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging. ACS Appl. Mater. Interfaces 2016, 8, 11288–11297.
78. Chen, L.; Zhou, L.L.; Wang, C.H.; Han, Y.; Lu, Y.L.; Liu, J.; Hu, X.C.; Yao, T.M.; Lin, Y.; Jin, Y. Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the receptor-mediated mechanism on nano-drug delivery systems. Molecules 2018, 23, 2286.
79. Naskar, S.; Sharma, S.; Kuotsu, K. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv. 2018, 25, 1791–1806.
80. Li, M.; Guo, D.; Wang, T.; Zhong, Z.; Zhang, M. Recent advances in pH-sensitive polymeric nanoparticles for drug delivery and cancer therapy. Cancer Biol. Med. 2021, 18, 1013–1032.
81. Guan, S.S.; Li, Z.; Zhang, Y.P.; Li, D.J.; Luo, Y.H.; Hu, D.D. A Review of Natural Polysaccharides for Drug Delivery Applications: Hot Spots and Progresses. Pharmaceutics 2021, 13, 1266.
82. Wu, J.L.; Duan, Y.M.; Li, Y.; Li, W.L.; Guo, C.Y.; Hu, G.H.; Li, X. A review on the effects of N-carboxyethyl chitosan (NCC) on drug delivery. Molecules 2021, 26, 5417.
83. Wu, L.L.; Wu, L.B.; Liu, Q.; Wu, F.; Yang, X.D.; Ma, X.C. Chitosan-based nanoparticles for cancer therapy. Curr. Drug Metab. 2019, 20, 804–812.
84. Rokhade, A.P.; Shelke, N.B.; Patil, S.A.; Aminabhavi, T.M. Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydr. Polym. 2007, 68, 218–228.
85. Farooq, M.A.; Snigdha, S.; Ranjan, S.; Akhtar, S.; Hasan, O.; Alhakamy, N.A.; Md, S.; Ahuja, A.; Panda, A.K.; Kushwah, V. Polymeric nanoparticles as a promising tool for drug delivery in the treatment of skin-related diseases. Int. J. Pharm. 2021, 610, 121178.
86. Khalid, I.; Shafiq, S.; Shah, S.A.A.; Ahmed, F.; Rehman, A.U.; Iqbal, J.; Baloch, M.K.; Muhammad, N. Chitosan-based nanocarriers for drug delivery applications. J. Pharm. Pharmacol. 2021, 73, 1049–1075.
87. Wang, S.; Zhang, X.L.; Shi, W.; Yang, S.Y.; Xing, X.; Zhao, Y.L.; Sun, Y.H.; Wang, X.Y.; Tang, L.H.; Yin, S.W. Optimization of amphiphilic cyclodextrin-based nanoparticles for effective delivery of anticancer drugs to solid tumors. Carbohydr. Polym. 2021, 274, 118580.
88. Verma, A.; Jain, A.; Tiwari, A.; Saraf, S.; Panda, P.K.; Agrawal, G.P. Approaches for assessing oral mucosal drug delivery systems: A comprehensive review. Int. J. Pharm. 2021, 596, 120207.
89. Liu, Z.F.; Jiao, Y.P.; Wang, Y.Y.; Zhou, C.L.; Zhang, Z.X. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 2008, 60, 1650–1662.
90. Fathi, M.; Hajialyani, M.; Farzaei, M.H.; Echeverria, J.; Nabavi, S.M.; Bishayee, A.; Farzaei, F. Targeting cancer with phytochemicals via their fine-tuning modulation of the cell cycle. BioFactors 2019, 45, 745–763.
91. Yhee, J.Y.; Lee, S.; Kim, K.; Kwon, I.C. Progress in inorganic nanoparticles for therapeutic applications. J. Pharm. Investig. 2021, 51, 113–133.
92. Kostarelos, K.; Novoselov, K.S. Exploring the interface of graphene and biology. Science 2014, 344, 261–263.
93. Lin, L.S.; Cong, Z.X.; Cao, J.B.; Ke, K.M.; Peng, Q.L.; Gao, J.; Yang, H.H.; Liu, G.; Chen, X. Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. J. Mater. Chem. B 2014, 2, 1031–1037.
94. Gurunathan, S.; Kim, J.H. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int. J. Nanomedicine 2016, 11, 1927–1945.
95. Sanna, V.; Pala, N.; Dessì, G.; Manconi, P.; Mariani, A.; Dedola, S.; Rassu, G.; Crosio, C.; Iaccarino, C.; Sechi, M. Single-step green synthesis and characterization of graphene oxide-whey proteins nanocomposite for bioapplications. Colloids Surf. B Biointerfaces 2018, 167, 412–420.
96. Yang, K.; Feng, L.Z.; Shi, X.Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530–547.

Most read articles by the same author(s)