FORMULATION AND INVITRO CHARACTERIZATION OF RH-VASCULAR ENDOTHELIAL GROWTH FACTOR LOADED SOLID LIPID NANOPARTICLES FOR HEALING CHRONIC WOUNDS

Main Article Content

A. Sathyaraj
Prof. M.V. Basaveswara Rao

Keywords

VEGF, Solid Lipid Nanoparticles, Invitro

Abstract

Vascular endothelial growth factor (VEGF) is one of the most potent proangiogenic growth factors in the skin, and the amount of VEGF present in a wound can significantly impact healing. In this research study, rhVEGF (recombinant Vascular Endothelial Growth Factor) was epitomized into various lipid nanoparticles, i.e., SLN and NLC. In vitro tests were attempted in fibroblasts and keratinocytes to decide the bioactivity of the typified rh-VEGF and to gauge the cell take-up ability of the lipid nanoparticles, and their effectiveness was compared with that of a few intra-lesional organizations of a higher measurement of free rhVEGF and that of a solitary intra-lesional organization of rh-VEGF-loaded polylactic-co-glycolic corrosive (PLGA) and alginate microspheres (MS-rhVEGF) created in our research facility [26]. Mending was assessed as far as wound conclusion, recuperation of the incendiary stage, and re-epithelisation review.

Abstract 45 | pdf Downloads 13

References

1. Emerich, D. F.; Thanos, C. G. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol. Eng., 2006, 23, 171-184.
2. Ramanavicius, A.; Kausaite, A.; Ramanaviciene, A. Polypyrrole-coated glucose oxidase nanoparticles for biosensor design. Sens. Actuat. B: Chem., 2005, 111-112, 532-539.
3. Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M. Biological applications of quantum dots. Biomaterials, 2007, 28, 4717-4732.
4. [Goldberg, M.; Langer, R.; Jia, X. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed., 2007, 18, 241-268.
5. Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3, 16-20.
6. Blasi, P.; Giovagnoli, S.; Schoubben, A.; Ricci, M.; Rossi, C. Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev., 2007, 59, 454-477.
7. Liu, W.; Hu, M.; Liu, W.; Xue, C.; Xu, H.; Yang, X. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. Int. J. Pharm., 2008, 364, 135-141.
8. [8] Sung, J. C.; Pulliam, B. L.; Edwards, D. A. Nanoparticles for drug delivery to the lungs. Trends Biotechnol., 2007, 25, 563-570.
9. Tan, A.; De La Peña, H.; Seifalian, A. M. The application of exosomes as a nanoscale cancer vaccine. Int. J. Nanomed., 2010, 5, 889-900.
10. Kocbek, P.; Obermajer, N.; Cegnar, M.; Kos, J.; Kristl, J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J. Control. Release, 2007, 120, 18-26.
11. Ye, J.; Wang, Q.; Zhou, X.; Zhang, N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm., 2008, 352, 273-279.
12. Chung, Y. I.; Tae, G.; Hong Yuk, S. A facile method to prepare heparin functionalized nanoparticles for controlled release of growth factors. Biomaterials, 2006, 27, 2621-2626.
13. Musumeci, T.; Ventura, C. A.; Giannone, I.; Ruozi, B.; Montenegro, L.; Pignatello, R.; Puglisi, G. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm., 2006, 325, 172-179.
14. Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26, 57-64.
15. Maeda, H.; Bharate, G. Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm.,2009, 71, 409-419.
16. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11, 812-818.
17. Brasnjevic, I.; Steinbusch, H. W. M.; Schmitz, C.; Martinez-Martinez, P. Delivery of peptide and protein drugs over the blood-brain barrier. Prog.Neurobiol., 2009, 87, 212-251.
18. Silva, G. A. Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier. Surg. Neurol., 2007, 67, 113-116.
19. Allard, E.; Passirani, C.; Benoit, J. P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials, 2009, 30, 2302-2318.
20. Pasha, S.; Gupta, K. Various drug delivery approaches to the central nervous system. Expert Opin. Drug Deliv., 2010, 7, 113-135.
21. Kusuhara, H.; Sugiyama, Y. Efflux transport systems for drugs at the bloodbrain barrier and blood-cerebrospinal fluid barrier (Part 2). Drug Discov. Today, 2001, 6, 206-212.
22. Ulbrich, K.; Hekmatara, T.; Herbert, E.; Kreuter, J. R. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur. J. Pharm. Biopharm., 2009, 71, 251-256.
23. Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev., 2008, 60, 1650-1662.
24. Jain, A. K.; Khar, R. K.; Ahmed, F. J.; Diwan, P. V. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur. J. Pharm. iopharm., 2008, 69, 426-435.
25. Kim, S.; Kim, J. H.; Jeon, O.; Kwon, I. C.; Park, K. Engineered polymers for advanced drug delivery. Eur. J. Pharm. Biopharm., 2009, 71, 420-430.
26. Chen, C.; Yu, C. H.; Cheng, Y. C.; Yu, P. H. F.; Cheung, M. K. Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers. Biomaterials, 2006, 27, 4804-4814.
27. Liang, H. F.; Yang, T. F.; Huang, C. T.; Chen, M. C.; Sung, H. W. Preparation of nanoparticles composed of poly( [gamma]-glutamic acid)- poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J. Control. Release, 2005, 105, 213-225.
28. Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. ActiveJournal targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60, 1615-1626.
29. Bajpai, A. K.; Shukla, S. K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci, 2008, 33, 1088-1118.
30. [30] Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuliresponsive nanocarriers for drug and gene delivery. J. Control. Release, 2008, 126, 187-204.
31. Rapoport, N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci., 2008, 32, 962-990.
32. [32] Pinto Reis, C.; Neufeld, R. J.; Ribeiro, A. J.; Veiga, F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2006, 2, 8-21.
33. Bilati, U.; Allqmann, E.; Doelker, E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur. J. Pharm. Biopharm., 2005, 24, 67-75.
34. Budhian, A.; Siegel, S. J.; Winey, K. I. Haloperidol-loaded PLGA nanoparticles: Systematic study of particle size and drug content. Int. J. Pharm., 2007, 336, 367-375.
35. Kim, D. H.; Martin, D. C. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials, 2006, 27, 3031-3037.
36. Jain, R. A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000, 21, 2475-2490.
37. Feng, S. S.; Mei, L.; Anitha, P.; Gan, C. W.; Zhou, W. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials, 2009, 30, 3297-3306.
38. Chaloupka, K, Malam, Y, Seifalian, A. M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol., 2010, 28, 580-8.
39. Pinto Reis, C.; Neufeld, R. J.; Ribeiro, A. n. J.; Veiga, F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine, 2006, 2, 53-65.
40. Cohen-Sela, E.; Chorny, M.; Koroukhov, N.; Danenberg, H. D.; Golomb, G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J. Control. Release, 2009, 133, 90-95.
41. Fonseca, C.; Simões, S.; Gaspar, R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release, 2002, 83, 273-286.
42. Ceruti, M.; Crosasso, P.; Brusa, P.; Arpicco, S.; Dosio, F.; Cattel, L. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing water-soluble prodrugs of paclitaxel. J. Control.Release, 2000, 63, 141-153.
43. McCarron, P. A.; Marouf, W. M.; Quinn, D. J.; Fay, F.; Burden, R. E.; Olwill, S. A.; Scott, C. J. Antibody targeting of camptothecin-loaded PLGA nanoparticles to tumor cells. Bioconjug. Chem., 2008, 19, 1561-1569.
44. [44] Panyam, J.; Zhou, W. Z.; Prabha, S.; Sahoo, S. K.; Labhasetwar, V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J., 2002, 16, 1217-1226.
45. Chang, J.; Jallouli, Y.; Kroubi, M.; Yuan, X. B.; Feng, W.; Kang, C. S.; Pu, P. Y.; Betbeder, D. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int. J. Pharm., 2009, 379, 285-292.
46. Gelperina, S.; Maksimenko, O.; Khalansky, A.; Vanchugova, L.; Shipulo, E.; Abbasova, K.; Berdiev, R.; Wohlfart, S.; Chepurnova, N.; Kreuter, J. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: Influence of the formulation parameters. Eur. J. Pharm. Biopharm., 2010, 74, 157-63.
47. Chavanpatil, M. D.; Patil, Y.; Panyam, J. Susceptibility of nanoparticleencapsulated paclitaxel to P-glycoprotein-mediated drug efflux. Int. J. Pharm., 2006, 320, 150-156.
48. [48] Xu, P.; Gullotti, E.; Tong, L.; Highley, C. B.; Errabelli, D. R.; Hasan, T.; Cheng, J. X.; Kohane, D. S.; Yeo, Y. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Mol. Pharm., 2008, 6, 190-201.
49. Fujita, H.; Banno, H.; Yamanouchi, D.; Kobayashi, M.; Yamamoto, K.; Komori, K. Pitavastatin Inhibits Intimal Hyperplasia in Rabbit Vein Graft. J. Surg. Res., 2008, 148, 238-243.
50. Simosa, H. F.; Pomposelli, F. B.; Dahlberg, S.; Scali, S. T.; Hamdan, A. D.; Schermerhorn, M. L. Predictors of failure after angioplasty of infrainguinal vein bypass grafts. J. Vasc. Surg., 2009, 49, 117-121.
51. Kimura, S.; Egashira, K.; Nakano, K.; Iwata, E.; Miyagawa, M.; Tsujimoto, H.; Hara, K.; Kawashima, Y.; Tominaga, R.; Sunagawa, K. Local delivery of imatinib mesylate (STI571)-incorporated nanoparticle ex vivo suppresses vein graft neointima formation. Circulation, 2008, 118, S65-S70.
52. Li, J.; Loh, X. J. Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery. Adv. Drug Deliv. Rev, 2008, 60, 1000-1017.
53. Du, Y. Z.; Xu, J. G.; Wang, L.; Yuan, H.; Hu, F. Q. Preparation and characteristics of hydroxypropyl- [beta]-cyclodextrin polymeric nanocapsules loading nimodipine. Eur. Polymer J., 2009, 45, 1397-1402.
54. Agueros, M.; Areses, P.; Campanero, M. A.; Salman, H.; Quincoces, G.; Penuelas, I.; Irache, J. M. Bioadhesive properties and biodistribution of cyclodextrin-poly(anhydride) nanoparticles. Eur. J. Pharm. Sci., 2009, 37, 231-240.
55. Memisoglu-Bilensoy, E.; Vural, I.; Bochot, A.; Renoir, J. M.; Duchene, D.; HIncal, A. A. Tamoxifen citrate loaded amphiphilic [beta]-cyclodextrin nanoparticles: In vitro characterization and cytotoxicity. J. Control. Release, 2005, 104, 489-496.