GENETICS AND MOLECULAR MUTATIONS IN BREAST CANCER

Main Article Content

Saliha Khalid
Tabinda Razzaq
Afriaz Khan
Sadia Afzal
Shiv Ram Ashraf
Laraib Zafar
Summayya Maryam
Kashif Nawaz
Abbas Shahid

Keywords

Breast cancer, BRCA, Family history, genetics, Oncogenes, Vaccines, mRNA therapeutics

Abstract

Breast cancer (BC) is still the most commonly occurring malignancy in women and it poses a formidable public health challenge worldwide. It comprises a group of molecularly heterogeneous diseases in patients with a family history and/or suggestive personnel, and a predisposing gene is identified in <30% of patients in this type of malignancy. About 25% of heritable cases are due to a mutation in one of the few identified rare, but highly penetrant genes (BRCA1, BRCA2, PTEN, TP53, CDH1, and STK11), which confer up to 80% lifetime risk of BC. Additionally, 2%–3% of BC cases are due to a mutation in moderate-penetrance gene (e.g. CHEK2, BRIP1, ATM, and PALB2), and each gene is associated with a twofold increase in risk. BCs can begin in different areas of the breast, such as the ducts, the lobules, or the tissue in between. Within the large group of diverse breast carcinomas, there are various denoted types of BC based on their invasiveness relative to the primary tumor sites. For treatment of BCs, personalized cancer vaccination strategy can be an effective approach to trigger a broad-based antitumor response that is both beneficial and relevant to individual cancer patients. However, mRNA provides a template for the synthesis of any given protein, its fragment and lends itself to a broad range of pharmaceutical uses, including cancer immunotherapy. With the ease of rapid, large scale manufacturing and production, mRNA is ideally poised not only for off-the shelf cancer vaccines but also for personalized neoantigen vaccination. This review provides a comprehensive survey of the genetics, molecular mutations, and state-of-the-art information on vaccine-based therapeutics for BC.

Abstract 149 | pdf Downloads 128

References

1. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018;5(2):77-106. doi:10.1016/j.gendis.2018.05.001
2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca Cancer J Clin 2021;71:209–49.
3. Dong S, Wang Z, Shen K, & Chen X. Metabolic Syndrome and Breast Cancer: Prevalence, Treatment Response, and Prognosis. Front Oncol 2021;11:1–21. https://doi.org/10.3389/fonc.2021.629666
4. Skol AD, Sasaki MM, Onel K. The genetics of breast cancer risk in the post-genome era: Thoughts on study design to move past BRCA and towards clinical relevance. Breast Cancer Res 2016;18(1):1–8. https://doi.org/10.1186/s13058-016-0759-4
5. Wiegering A, Isbert C, Dietz UA, Volker Z, Sabine A, Kerscher A, et al. Multimodal therapy in treatment of rectal cancer is associated with improved survival and reduced local recurrence - a retrospective analysis over two decades. BMC Cancer 2014;14:816 https://doi.org/10.1186/1471-2407-14-816
6. Francies FZ, Hull R, Khanyile R, Dlamini Z. Breast cancer in low-middle income countries: abnormality in splicing and lack of targeted treatment options. Am J Cancer Res 2020;10(5):1568-91.
7. Wheeler SB, Reeder-Hayes KE, Carey LA. Disparities in breast cancer treatment and outcomes: biological, social, and health system determinants and opportunities for research. Oncologist. 2013;18(9):986-93. doi:10.1634/theoncologist.2013-0243
8. Seiler A, Chen MA, Brown RL, Fagundes CP. Obesity, Dietary Factors, Nutrition, and Breast Cancer Risk. Curr Breast Cancer Rep 2018;10(1):14-27. doi:10.1007/s12609-018-0264-0
9. Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G. Breast cancer. Lancet 2005;365(9472):1727–41.
10. Collaborative Group on Hormonal Factors in Breast C Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet. 2001;358(9291):1389–99.
11. Colditz GA, Kaphingst KA, Hankinson SE, Rosner B. Family history and risk of breast cancer: nurses' health study. Breast Cancer Res Treat 2012;133(3):1097–04
12. Shiovitz S, & Korde LA. Genetics of breast cancer: A topic in evolution. Annals of Oncology2015;26(7):1291–99. https://doi.org/10.1093/annonc/mdv022
13. Shiovitz S, Korde LA. Genetics of breast cancer: a topic in evolution. Ann Oncol. 2015;26(7):1291-9. doi: 10.1093/annonc/mdv022.
14. Suter R, Marcum JA. The molecular genetics of breast cancer and targeted therapy. Biologics. 2007;1(3):241-58.
15. Abreu Velez AM, Howard MS. Tumor-suppressor Genes, Cell Cycle Regulatory Checkpoints, and the Skin. N Am J Med Sci 2015;7(5):176-88. doi:10.4103/1947-2714.157476.
16. Sabbah M, Courilleau D, Mester J, Redeuilh G. Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proc Natl Acad Sci U S A 1999;96(20):11217-222. doi:10.1073/pnas.96.20.11217.
17. Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 2010;146(3):264-75. doi:10.1016/j.jconrel.2010.04.009.
18. Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol 2003;200(3):290-7. doi: 10.1002/path.1370.
19. Fernández-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer 2011;2(3):344-58. doi:10.1177/1947601911411084.
20. Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 2013;19(3):197-09. doi:10.1016/j.molmed.2012.12.007.
21. Abdulkareem IH, Blair M. Phosphatase and tensin homologue deleted on chromosome 10. Niger Med J 2013;54(2):79-86. doi:10.4103/0300-1652.110033.
22. Lee SH, Ryoo E, Tchah H. Bannayan-Riley-Ruvalcaba Syndrome in a Patient with a PTEN Mutation Identified by Chromosomal Microarray Analysis: A Case Report. Pediatr Gastroenterol Hepatol Nutr 2017;20(1):65-70. doi: 10.5223/pghn.2017.20.1.65.
23. Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev. 2012;26(12):1268-86. doi:10.1101/gad.190678.112.
24. Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer 2011;2(4):466-74. doi:10.1177/1947601911408889.
25. Berry JL, Polski A, Cavenee WK, Dryja TP, Murphree AL, Gallie BL. The RB1 Story: Characterization and Cloning of the First Tumor Suppressor Gene. Genes (Basel). 2019;10(11):879. doi:10.3390/genes10110879
26. Du W, Searle JS. The rb pathway and cancer therapeutics. Curr Drug Targets 2009;10(7):581-89. doi:10.2174/138945009788680392.
27. Rosen EM, Fan S, Pestell RG. and Goldberg ID. BRCA1 gene in breast cancer. J Cell Physiol 2003;196:19-41. https://doi.org/10.1002/jcp.10257.
28. Olopade OI, Grushko TA, Nanda R, Huo D. Advances in breast cancer: pathways to personalized medicine. Clin Cancer Res 2008;14(24):7988-99. doi:10.1158/1078-0432.CCR-08-1211.
29. Jara L, Morales S, de Mayo T, Gonzalez-Hormazabal P, Carrasco V, Godoy R. Mutations in BRCA1, BRCA2 and other breast and ovarian cancer susceptibility genes in Central and South American populations. Biol Res 2017;50(1):35. doi:10.1186/s40659-017-0139-2.
30. Apostolou P, Papasotiriou I. Current perspectives on CHEK2 mutations in breast cancer. Breast Cancer 2017;9:331-35. doi:10.2147/BCTT.S111394.
31. Biancolella M, Testa B, Baghernajad SL, D’Apice MR, & Novelli G. Genetics and Genomics of Breast Cancer: update and translational perspectives. Sem Cancer Biol 2019;72:27–35. https://doi.org/10.1016/j.semcancer.2020.03.013
32. Zhu SY, and Yu KD. Breast Cancer Vaccines: Disappointing or Promising? Front. Immunol. 2022;13:828386. doi: 10.3389/fimmu.2022.828386
33. 33. Butterfield LH. Cancer Vaccines. BMJ 2015:350:h988. doi: 10.1136/ bmj.h988
34. Domchek SM, Recio A, Mick R, Clark CE, Carpenter EL, Fox KR, et al. Telomerase-Specific T-Cell Immunity in Breast Cancer: Effect of Vaccination on Tumor Immunosurveillance. Cancer Res 2007;67:10546–55. doi: 10.1158/0008-5472.CAN-07-2765
35. Miao L, Zhang Y, & Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer 2021;20:41. https://doi.org/10.1186/s12943-021-01335-5.
36. Son S, Nam J, Zenkov I, Ochyl LJ, Xu Y, Scheetz L, et al. Sugar-Nanocapsules imprinted with microbial molecular patterns for mRNA vaccination. Nano Lett. 2020;20(3):1499–509.
37. Wang Y, Zhang Z, Luo J, et al. mRNA vaccine: a potential therapeutic strategy. Mol Cancer 2021;20:33. https://doi.org/10.1186/s12943-021-01311-z.
38. Jahanafrooz Z, Baradaran B, Mosafer J, et al. Comparison of DNA and mRNA vaccines against cancer. Drug Discov Today 2020;25(3):552-60. doi:10.1016/j.drudis.2019.12.003.
39. Kyrieleis OJ, Chang J, de la Peña M, Shuman S, Cusack S. Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus. Structure 2014;22(3):452-65. doi:10.1016/j.str.2013.12.014.
40. Kushwaha M, Rostain W, Prakash S, Duncan JN, Jaramillo A. Using RNA as Molecular Code for Programming Cellular Function. ACS Synth Biol 2016;5:795–09.
41. Angeli D, Salvi S, Tedaldi G. Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test?. Int J Mol Sci. 2020;21(3):1128. doi:10.3390/ijms21031128.
42. Børresen-Dale AL. TP53 and breast cancer. Hum Mutat 2003;21(3):292-300. doi: 10.1002/humu.10174.
43. Fusco N, Sajjadi E, Venetis K, Gaudioso G, Lopez G, Corti C, et al. PTEN Alterations and Their Role in Cancer Management: Are We Making Headway on Precision Medicine? Genes 2020;11(7):719. https://doi.org/10.3390/genes11070719.
44. Thompson D. Cancer Incidence in BRCA1 Mutation Carriers. J Natl Cancer Inst 2002;94:1358–65.
45. Hoskins LM, Roy K, Peters JA, Loud JT, Greene MH. Disclosure of positive BRCA1/2-mutation status in young couples: The journey from uncertainty to bonding through partner support. Fam Syst Health 2008;26:296–16.
46. Rainville I, Hatcher S, Rosenthal E, Larson K, Bernhisel R, Meek S, et al. High risk of breast cancer in women with biallelic pathogenic variants in CHEK2. Breast Cancer Res Treat 2020;180:503–09.
47. Foretová L, Navrátilová M, Svoboda M, Vašíˇcková P, Hrabincová ES, Házová J, et al. Recommendations for Preventive Care for Women with Rare Genetic Cause of Breast and Ovarian Cancer. Klin Onkol 2019;32:6–13.
48. Hu ZY, Liu L, Xie N, Lu J, Liu Z, Tang Y, et al. Germline PALB2 Mutations in Cancers and Its Distinction from Somatic PALB2 Mutations in Breast Cancers. Front Genet 2020;11:829.
49. Cantor SB, Guillemette S. Hereditary breast cancer and the BRCA1-associated FANCJ/BACH1/BRIP1. Future Oncol 2011;7:253–61.
50. Patel JM, Goss A, Garber JE. Retinoblastoma protein expression and its predictors in triple-negative breast cancer. npj Breast Cancer 2020;6:19.
51. Somyajit K, Subramanya S, Nagaraju G. Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: implications for Fanconi anemia and breast cancer susceptibility. J Biol Chem 2012;287(5):3366-80.
52. Pittman DL, Weinberg LR, and Schimenti JC, Identification, Characterization, and Genetic Mapping of Rad51d, a New Mouse andHumanRAD51/RecA-Related Gene. Genomic 1998;49(1):103–11.
53. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 2009;101:736–50.
54. Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res 2008;68:3108–14.
55. Cao Lu, and Yun Niu. Triple negative breast cancer: special histological types and emerging therapeutic methods. Cancer bio med 2020;17:293-06. doi:10.20892/j.issn.2095-3941.2019.0465.
56. Renoir JM, Marsaud V, Lazennec G. Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol 2013;85(4):449e465.
57. Saha RS, Vadlamudi RK. Role of estrogen receptor signaling in breast cancermetastasis. Int J Breast Cancer 2012;2012:654698.
58. Fuqua SA, Cui Y. Estrogen and progesterone receptor isoforms: clinical significance in breast cancer. Breast Cancer Res Treat 2004;87:S3eS10.
59. Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res 2016;18(1):17.
60. Vogel VG. Epidemiology, genetics, and risk evaluation of postmenopausal women at risk of breast cancer. Menopause 2008;15:782e789.
61. Colditz GA, Kaphingst KA, Hankinson SE, Rosner B. Family history and risk of breast cancer: nurses’ health study. Breast Cancer Res Treat 2012;133(3):1097e1104.
62. Yang XR, Sherman ME, Rimm DL, et al. Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomark Prev 2007;16(3):
63. 439e443.
64. Kaminska M, Ciszewski T, Lopacka-Szatan K, Miotla P, Staroslawska E. Breast cancer risk factors. Prz Menopauzalny 2015;14(3):196e202.
65. Xie Y, Bourgeois D, Guo B, Zhang R. Comparison of conventional and advanced radiotherapy techniques for left-sided breast cancer after breast conserving surgery. Med Dosim 2020;45:e9–16.
66. Coles CE, Griffin CL, Kirby AM, et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOWtrial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet 2017;390:1048–60.
67. Dubsky P, Pinker K, Cardoso F, et al. Breast conservation and axillary management after primary systemic therapy in patients with early-stage breast cancer: the Lucerne toolbox. Lancet Oncol 2021;22:e18–28.
68. Nur U, El Reda D, Hashim D, Weiderpass E. A prospective investigation of oral contraceptive use and breast cancer mortality: findings from the Swedish women’s lifestyle and health cohort. BMC Cancer 2019;19:807.
69. Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 2017;317:2402–16.
70. Cuzick J, Sestak I, Bonanni B, et al. Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet 2013;381: 1827–34.
71. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 2005;97:1652–62.
72. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer–the road to new treatment strategies. Lancet 2017;389:2430–42.
73. Wolff AC, Hammond MEH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J Clin Oncol 2018;36:2105–22.
74. André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 2019;380:1929–40.
75. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61–70.
76. Piroth MD, Baumann R, Budach W, et al. Heart toxicity from breast cancer radiotherapy: current findings, assessment, and prevention. Strahlenther Onkol 2019;195:1–12.
77. DeSantis CE, Ma J, Gaudet MM. Breast cancer statistics. CA Cancer J Clin 2019;69:438–51.
78. Barnard ME, Boeke CE, Tamimi RM. Established breast cancer risk factors and risk of intrinsic tumor subtypes. Biochim Biophys Acta 2015;1856(1):73e85.
79. Allison KH. Molecular pathology of breast cancer: what a pathologist needs to know. Am J Clin Pathol 2012;138(6):770e780.
80. Hartmann LC, Sellers TA, Frost MH, et al. Benign breast disease and the risk of breast cancer. N Engl J Med 2005;353(3):229e237
81. Dupont WD, Parl FF, Hartmann WH, et al. Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Cancer 1993;71(4):1258e1265.
82. Renoir JM, Marsaud V, Lazennec G. Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol 2013;85(4):449e465.
83. Enhanced decomposition of metronidazole in water: comparative analysis of tio2 and zno heterogeneous photocatalysis. (2024). Journal of Population Therapeutics and Clinical Pharmacology, 31(6), 2058-2070. https://doi.org/10.53555/jptcp.v31i6.6821.
84. Ali, S., Fatima, L., Ahmad, M. U., Khan, Q. F., Hayyat, M. U., Siddiq, Z., ... & Bourhia, M. (2024). Green synthesis of Agaricus avensis-mediated silver nanoparticles for improved catalytic efficiency of tyrosine hydroxylase towards potential biomedical implications. Discover Life, 54(1), 4.

Most read articles by the same author(s)