IMPACT OF EPIGENETIC MODIFICATIONS ON DIABETES MELLITUS AND ITS COMPLICATIONS

Main Article Content

Bhushanam M.
Dakshayini P.N.
Abhinandini I.D

Keywords

Epigenetic changes, Hyperglycemia, Diabetic nephropathy, Neuropathy, Cardiovascular diseases

Abstract

The current review outlines the imprint of epigenetic changes on the development of diabetes mellitus (DM) and its comorbidities. Diabetes mellitus includes T1DM and T2DM, which are chronic disease associated with hyperglycemia due to insulin deficiency or insulin resistance. DNA methylation and histone modification along with microRNA and small interfering RNA have been established to participate in diabetes regulating the gene related with insulin production, secretion and glucose metabolism. It has been established that, the methylation of DNA in functional genes such as PDXI and IGF2 is associated with the abnormal functioning of beta-cells and insulin resistance in T2DM. Histone modifications also have crucial roles: histone acetylation is involved in modulation of insulin secretion and sensitivity. Also, microRNAs and long intergenic non-coding RNAs, which comprise a diverse group of molecules, are involved in the management of beta-cell action as well as glucose utilization. Genomic imprinting is involved not only in the development of diabetes but also in its complications as diabetic nephropathy, neuropathy, and cardiovascular diseases. These may be used as intervention points for the prophylaxis and treatment of diabetes besides its complications. New knowledge being generated in understanding the epigenetic role in diabetes will add areas of therapeutic intervention to reduce mortality and morbidities in patients with diabetes.

Abstract 30 | Pdf Downloads 12

References

American Diabetes Association’s Standards of Medical Care in Diabetes—2018. Diabetes Care 2018;41(Suppl. 1):S1–S159.
Ashcroft, F. M., & Rorsman, P. (2012). Diabetes mellitus and the β cell: The last ten years. Cell, 148(6), 1160–1171. https://doi.org/10.1016/j.cell.2012.02.010
Bansal, A., & Pinney, S. E. (2017). DNA methylation and its role in the pathogenesis of diabetes. Pediatric diabetes, 18(3), 167–177. https://doi.org/10.1111/pedi.12521
Barres, R., Kirchner, H., Rasmussen, M., Yan, J., Kantor, F. R., Krook, A., Näslund, E., & Zierath, J. R. (2013). Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell reports, 3(4), 1020–1027. https://doi.org/10.1016/j.celrep.2013.03.018
Barua, S., Kuizon, S. & Junaid, M.A. Folic acid supplementation in pregnancy and implications in health and disease. J Biomed Sci 21, 77 (2014). https://doi.org/10.1186/s12929-014-0077-z
Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6–21. https://doi.org/10.1101/gad.947102
Boucher, J., Kleinridders, A., & Kahn, C. R. (2014). Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspectives in Biology, 6(1), a009191. https://doi.org/10.1101/cshperspect.a009191
Brownlee, M. (2005). The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 54(6), 1615–1625. https://doi.org/10.2337/diabetes.54.6.1615
Burdge, G. C., Slater-Jefferies, J., Torrens, C., Phillips, E. S., Hanson, M. A., & Lillycrop, K. A. (2007). Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. The British journal of nutrition, 97(3), 435–439. https://doi.org/10.1017/S0007114507352392
Christensen, D. P., Dahllöf, M., Lundh, M., Rasmussen, D. N., Nielsen, M. D., Billestrup, N., Grunnet, L. G., & Mandrup-Poulsen, T. (2011). Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Molecular medicine (Cambridge, Mass.), 17(5-6), 378–390. https://doi.org/10.2119/molmed.2011.00021
Crider, K. S., Yang, T. P., Berry, R. J., & Bailey, L. B. (2012). Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Advances in nutrition (Bethesda, Md.), 3(1), 21–38. https://doi.org/10.3945/an.111.000992
Dayeh, T., & Ling, C. (2015). Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes?. Biochemistry and cell biology = Biochimie et biologie cellulaire, 93(5), 511–521. https://doi.org/10.1139/bcb-2015-0057
Egger, G., et al. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990), 457-463. https://doi.org/10.1038/nature02625
Guo, K., Elzinga, S., Eid, S., Figueroa-Romero, C., Hinder, L. M., Pacut, C., Feldman, E. L., & Hur, J. (2019). Genome-wide DNA methylation profiling of human diabetic peripheral neuropathy in subjects with type 2 diabetes mellitus. Epigenetics, 14(8), 766–779. https://doi.org/10.1080/15592294.2019.1615352
Gupta, V., Gupta, A., Jafar, T., Gupta, V., Agrawal, S., Srivastava, N., Kumar, S., Singh, A. K., Natu, S. M., Agarwal, C. G., & Agarwal, G. G. (2012). Association of TNF-α promoter gene G-308A polymorphism with metabolic syndrome, insulin resistance, serum TNF-α and leptin levels in Indian adult women. Cytokine, 57(1), 32-36. https://doi.org/10.1016/j.cyto.2011.11.002
Halban, P. A., Polonsky, K. S., Bowden, D. W., Hawkins, M. A., Ling, C., Mather, K. J., Powers, A. C., Rhodes, C. J., Sussel, L., & Weir, G. C. (2014). β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes care, 37(6), 1751–1758. https://doi.org/10.2337/dc14-0396
Haumaitre, C., Lenoir, O., & Scharfmann, R. (2008). Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Molecular and cellular biology, 28(20), 6373–6383. https://doi.org/10.1128/MCB.00413-08
Holt, R. I. G., Cockram, C., Flyvbjerg, A., & Goldstein, B. J. (Eds.). (2017). Textbook of diabetes (5th ed.). Wiley Blackwell.
Kan, S., Wu, J., Sun, C., Hao, J., & Wu, Z. (2018). Correlation between RAGE gene promoter methylation and diabetic retinal inflammation. Experimental and therapeutic medicine, 15(1), 242–246. https://doi.org/10.3892/etm.2017.5378
Keating, S. T., Plutzky, J., & El-Osta, A. (2016). Epigenetic Changes in Diabetes and Cardiovascular Risk. Circulation research, 118(11), 1706–1722. https://doi.org/10.1161/CIRCRESAHA.116.306819
Knip, M., & Simell, O. (2012). Environmental triggers of type 1 diabetes. Cold Spring Harbor Perspectives in Medicine, 2(7), a007690. https://doi.org/10.1101/cshperspect.a007690
Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705. https://doi.org/10.1016/j.cell.2007.02.005
Lanphier, E., Urnov, F., Haecker, S. E., Werner, M., & Smolenski, J. (2015). Don't edit the human germ line. Nature, 519(7544), 410–411. https://doi.org/10.1038/519410a
Latreille, M., Hausser, J., Stützer, I., Zhang, Q., Hastoy, B., Gargani, S., Kerr-Conte, J., Pattou, F., Zavolan, M., Esguerra, J. L., Eliasson, L., Rülicke, T., Rorsman, P., & Stoffel, M. (2014). MicroRNA-7a regulates pancreatic β cell function. The Journal of clinical investigation, 124(6), 2722–2735. https://doi.org/10.1172/JCI73066
Loh, M., Zhou, L., Ng, H. K., & Chambers, J. C. (2019). Epigenetic disturbances in obesity and diabetes: Epidemiological and functional insights. Molecular Metabolism, 27(Suppl), S33–S41. https://doi.org/10.1016/j.molmet.2019.06.011
Mazzone, R., Zwergel, C., Artico, M. et al. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenet 11, 34 (2019). https://doi.org/10.1186/s13148-019-0632-2
McKinsey, T.A. Targeting Inflammation in Heart Failure with Histone Deacetylase Inhibitors. Mol Med 17, 434–441 (2011). https://doi.org/10.2119/molmed.2011.00022
Pugliese, A., & Miceli, D. (2002). The insulin gene in diabetes. Diabetes/metabolism research and reviews, 18(1), 13–25. https://doi.org/10.1002/dmrr.261
Rakyan, V. K., Down, T. A., Balding, D. J., & Beck, S. (2011). Epigenome-wide association studies for common human diseases. Nature reviews. Genetics, 12(8), 529–541. https://doi.org/10.1038/nrg3000
Reddy, M. A., Park, J. T., & Natarajan, R. (2012). Epigenetic modifications and diabetic nephropathy. Kidney research and clinical practice, 31(3), 139–150. https://doi.org/10.1016/j.krcp.2012.07.004
Sampson, M. J., Davies, I. R., Braschi, S., Hollins, A. J., & Jassal, N. (2014). Increased DNA methylation of the RAGE gene promoter in patients with diabetic nephropathy. Clinical Epigenetics, 6, 50. https://doi.org/10.1186/s13148-014-0050-y
Xie, N., Zhou, Y., Sun, Q., & Tang, B. (2018). Novel Epigenetic Techniques Provided by the CRISPR/Cas9 System. Stem cells international, 2018, 7834175. https://doi.org/10.1155/2018/7834175
Yang, B. T., Dayeh, T. A., Kirkpatrick, C. L., Taneera, J., Kumar, R., Groop, L., Wollheim, C. B., Nitert, M. D., & Ling, C. (2011). Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia, 54(2), 360–367. https://doi.org/10.1007/s00125-010-1967-6
Yuan, H., Reddy, M. A., Deshpande, S., Jia, Y., Park, J. T., Lanting, L. L., Jin, W., Kato, M., Xu, Z. G., Das, S., & Natarajan, R. (2016). Epigenetic Histone Modifications Involved in Profibrotic Gene Regulation by 12/15-Lipoxygenase and Its Oxidized Lipid Products in Diabetic Nephropathy. Antioxidants & redox signaling, 24(7), 361–375. https://doi.org/10.1089/ars.2015.6372