ACCESSING PAKISTANI COMMERCIAL HONEY FOR ITS COMPOSITIONAL, QUALITY, SAFETY, ANTIBACTERIAL AND PHYTOCHEMICAL ANALYSIS: A PRE-CLINICAL SCREENING
Main Article Content
Keywords
Honey, Adulteration, Pesticides residue, Safety, In-vitro anti-bacterial activity
Abstract
Honey usage as medicine is as old as 4000-years. The application of honey as therapeutic is increasing, the pre-clinical screening is crucial to evaluate its effectiveness to ensure its medical grade. The first ever therapeutic use of honey was for wound healing but is now recognized in many other health ailments owing to its antioxidant, anti-microbial, anti-inflammatory, anti-proliferative, anti-cancer, anti-metastatic, anti-fungal and anti-viral properties. The adulteration with different substances, pesticides, microbes, and heavy metals can prove to be toxic for human health effecting organs. This study aims to access the different Pakistani commercial honey to check its authenticity via different methods including compositional, quality, safety and anti-bacterial analysis. To evaluate its therapeutic potential in-vitro analysis includes total phenolic content (TPC), total flavonoid content (TFC), radical scavenging activity via DPPH and FRAP were carried out. All honey samples fall under the permissible limits set by the international and national legislative bodies. The safety analysis total plate, fungi and mold were also under the permissible limits. No pesticides were detected. The heavy metals such as lead, cadmium and arsenic were found in range of 0.0-2.22, 0.0-0.18 and 0.0-0.2mg/kg. The total phenolic (21.9mgGAE/100g) and flavonoid content (2.76-5.57mgCAT/100g) were found to be highly variable similar their respective antioxidant activity DPPH (18-45%) and FRAP (954-1445µMFeII/100g). Forest Sidr honey showed highest anti-bacterial activity against all 3 bacterial isolates i.e., Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae, then any other honey sample. Great variability in composition, and its safety concerns demand rigorous testing before clinical applications.
References
2. Kahraman, T., S.K. Buyukunal, A. Vural and S.S. Altunatmaz. 2010. Physico-chemical properties in honey from different regions of Turkey. Food Chem. 123:41-44.
3. Scholz, M.B.D.S., A.Q. Júnior, B.H. Delamuta, J.M. Nakamura, M.C. Baudraz, M.O. Reis, T. Kato, M.R. Pedrão, L.F. Dias and D.T.R. Dos Santos. 2020. Indication of the geographical origin of honey using its physicochemical characteristics and multivariate analysis. J. Food Sci. Technol. 57:1896-1903.
4. FAO (Food and Agricultural Organization). 2019. Honey. Available at: http://www.fao.org/resources/infographics/infographics-details/en/c/1202954/. Accessed on: 23thAugust, 2023.
5. Combarros-Fuertes, P., L.M. Estevinho, L.G. Dias, J.M. Castro, F.A. Tomás-Barberán, M.E. Tornadijo and J.M. Fresno-Baro. 2018. Bioactive components and antioxidant and antibacterial activities of different varieties of honey: A screening prior to clinical application. J. Agr. Food Chem. 67:688-698.
6. Naik, P.P., D. Mossialos, B.V. Wijk, P. Novakova, F.A. Wagener and N.A. Cremers. 2021. Medical-grade honey outperforms conventional treatments for healing cold sores - A clinical study. Pharm. 14:12-34.
7. Samat, S., F.K. Enchang, A. Abd Razak, F.N. Hussein and W.W. Ismail. 2018. Adulterated honey consumption can induce obesity, increase blood glucose level and demonstrate toxicity effects. Sains Malays. 47:353-365.
8. Ajibola, A., J.P. Chamunorwa and K.H. Erlwanger. 2012. Nutraceutical values of natural honey and its contribution to human health and wealth. Nutr. Metab. 9:1-12.
9. EFSA (European Food Safety Authority). 2022. Scientific support for preparing an EU position for the 52nd session of the Codex Committee on Pesticide Residues (CCPR). Eur. Food Saf. Auth. J. 19:14-25.
10. Grabowski, N. and G. Klein. 2017. Microbiology and foodborne pathogens in honey. Crit. Rev. Food Sci. Nutr. 57:1852-1862.
11. Musa, M.Y., A.E. Elfaki and S.E.A. Mohammed. 2014. Microbiological characterization and physicochemical properties of Sudanese honeys. Br. Microbiol. Res. J. 4:715-722.
12. Sereia, M.J., M.R.F.G. Perdoncini, P.H. Marco, R.S. Parpinelli, E.G. Lima and F.A. Ani. 2017. Techniques for the evaluation of microbiological quality in honey. p. 259-285. In: Honey Analysis. Toledo, V.A.A. (ed.). Intech Open, UK.
13. Naila, A., J. Wn, N.A. Hannan, S. Flint, A.Z. Sulaiman, A. Mohamed and A. Ajit. 2022. Microbiological and physiochemical quality of honey imported into the Maldives. Food Sci. Technol. 2:836-843.
14. Silici, S., O. Sagdic and L. Ekici. 2010. Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys. Food Chem. 121:238-243.
15. Hegazi, A.G., F.M. Al Guthami, M.F. Ramadan, A.F. Al Gethami, A.M. Craig and S. Serrano. 2022. Characterization of sidr (Ziziphus spp.) honey from different geographical origins. App. Sci. 12:1-14.
16. Anand, S., E. Pang, G. Livanos and N. Mantri. 2018. Characterization of physico-chemical properties and antioxidant capacities of bioactive honey produced from Australian grown Agastache rugosa and its correlation with colour and poly-phenol content. Molecules. 23:108-116.
17. Rizelio, V.M., L. Tenfen, R.D. Silveira, L.V. Gonzaga, A.C.O. Costa and R. Fett. 2012. Development of a fast capillary electrophoresis method for determination of carbohydrates in honey samples. Talanta. 93:62-66.
18. Codex Alimentarius Commission. 2001. Revised Codex Standard for Honey. Available at: https://www.ihc-platform.net/codex2001.pdf. Accessed on 7th August, 2023.
19. Chua, L.S. and N.A. Adnan. 2014. Biochemical and nutritional components of selected honey samples. Acta Sci. Pol. Technol. Aliment. 13:169-179.
20. Vanhanen, L.P., A. Emmertz and G.P. Savage. 2011. Mineral analysis of mono-floral New Zealand honey. Food Chem. 128:236-240.
21. IHC (International Honey Commission). 2009. Harmonized methods of the international honey commission. Available at: https://www.ihc-platform.net/. Accessed on: 07th August, 2023.
22. AACC (American Association for Clinical Chemistry). 2010. Approved Methods of American Association of Cereal Chemists, 10th Ed. St. Paul, MN, USA.
23. AOAC (Association of Official Analytical Chemists). 2023. Official Methods of Analysis of AOAC International, 22nd Ed. Oxford University Press, Oxford, UK.
24. Pascual-Maté, A., S.M. Osés, M.A. Fernández-Muiño and M.T. Sancho. 2018. Methods of analysis of honey. J. Apic. Res. 57:38-74.
25. PSQCA. 2010. Pakistan Standards: Honey 1934-2012. Pakistan Standards and Quality Control Authority. 3rd Revision, pp 1-8.
26. Oses, S.M., A. Pascual-Mate, D. De-La-Fuente, A. De-Pablo, M.A. Fernández-Muiño and M.T. Sancho. 2016. Comparison of methods to determine antibacterial activity of honeys against Staphylococcus aureus. NJAS-Wagen. J. Life Sci. 78:29-33.
27. Alvarez-Suarez, J.M., F. Giampieri, A.M. González-Paramás, E. Damiani, P. Astolfi, G. Martinez-Sanchez, S. Bompadre, J.L. Quiles, C. Santos-Buelga and M. Battino. 2012. Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food Chem. Toxicol. 50:1508-1516.
28. Odeyemi, A.T., S.O. Adefemi and A.A. Adebayo. 2013. Antimicrobial and proximate properties of some processed honey in Ado-Ekiti. Int. J. Aquat. Sci. 4:36-43.
29. Nemo, R. and K. Bacha. 2021. Microbial quality, physicochemical characteristics, proximate analysis and antimicrobial activities of honey from Anfilo district. Food Biosci. 42:1-8.
30. Tahir, A.A., N.F.A. Sani, N.A. Murad, S. Makpol, W.Z.W. Ngah and Y.A.M. Yusof. 2015. Combined ginger extract & Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells. Nutr. J. 14:1-10.
31. Shiddiq, M., R. Salambue, N.Z. Yasmin, F. Lismayeni, S. Fitridhani and H. Adzani. 2018. Laser based imaging method to discriminate Riau Province pure honeys. J. Phys.: Conf. Ser. 1120:1-9.
32. Anguebes, F., L. Pat, B. Ali, A. Guerrero, A.V. Córdova, M. Abatal and J.P. Garduza. 2016. Application of multivariable analysis and FTIR-ATR spectroscopy to the prediction of properties in campeche honey. J. Anal. Methods Chem. 2016:1-14.
33. Habib, H.M., F.T. Al Meqbali, H. Kamal, U.D. Souka and W.H. Ibrahim. 2014. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions. Food Chem. 153:28-34.
34. Nanda, V., B. Sarkar, H. Sharma and A. Bawa. 2003. Physico-chemical properties and estimation of mineral content in honey produced from different plants in Northern India. J. Food Compos. Anal. 16:613-619.
35. Kirs, E., R. Pall, K. Martverk and K. Laos. 2011. Physicochemical and melissopalynological characterization of Estonian summer honeys. Procedia. Food Sci. 1:616-624.
36. Silva, L.R., R. Videira, A.P. Monteiro, P. Valentão and P.B. Andrade. 2009. Honey from Luso region (Portugal): Physicochemical characteristics and mineral contents. Microchem. J. 93:73-77.
37. Di-Bella, G., V.L. Turco, A.G. Potortì, G.D. Bua, M.R. Fede and G. Dugo. 2015. Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J. Food Compos. Anal. 44:25-35.
38. Zerrouk, S., M.C. Seijo, O. Escuredo and M.S. Rodríguez-Flores. 2018. Characterization of Ziziphus lotus (jujube) honey produced in Algeria. J. Apic. Res. 57:166-174.
39. Aazza, S., B. Lyoussi, D. Antunes and M.G. Miguel. 2013. Physicochemical characterization and antioxidant activity of commercial Portuguese honeys. J. Food Sci. 78:1159-1165.
40. Noor, N. 2015. Analysis of medicinal and chemical properties of honeys collected from some selected locations of Pakistan. Ph.D. Diss., Dept. Chem., Univ. Agric., Faisalabad, Pakistan.
41. Alves, A., A. Ramos, M.M. Gonçalves, M. Bernardo and B. Mendes. 2013. Antioxidant activity, quality parameters and mineral content of Portuguese monofloral honeys. J. Food Compos. Analysis. 30:130-138.
42. Khan, S.J., M. Shafique, S. Kausar, S. Nawaz, A. Salariya and N. Ejaz. 2009. Study of physiochemical characteristics and pollen spectrum of honey available in Lahore. Pak. J. Biochem. Mol. Biol. 42:58-62.
43. Nasiruddin K.M., M. Qaiser, S.M. Raza and M. Rehman. 2006. Physicochemical properties and pollen spectrum of imported and local samples of blossom honey from the Pakistani market. Int. J. Food Sci. Technol. 41:775-781.
44. Sharif, A., M. Iftikhar, A. Hussain, M.U. Rehman, S.F. Zaidi, M. Akram, M. Daniyal and K. Usmanghani. 2018. Evaluation of physio-chemical properties of honey collected from local markets of Lahore, Pakistan. Pak. J. Med. Biol. Sci. 2:1-6.
45. Gulfraz, M., F. Iftikhar, M. Imran, A. Zeenat, S. Asif and I. Shah. 2011. Compositional analysis and antimicrobial activity of various honey types of Pakistan. Int. J. Food Sci. Technol. 46:263-267.
46. Iqbal, M.N., A.A. Anjum, M.A. Ali, F. Hussain, S. Ali, A. Muhammad, M. Irfan, A. Ahmad and A. Shabbir. 2015. Assessment of microbial load of un-pasteurized fruit juices and in vitro antibacterial potential of honey against bacterial isolates. Open Microbiol. J. 9:26-32.
47. Boateng, J. and K.N. Diunase. 2015. Comparing the antibacterial and functional properties of Cameroonian and manuka honeys for potential wound healing-have we come full cycle in dealing with antibiotic resistance? Molecules. 20:16068-16084.
48. Devi, S., A. Parihar, M. Thakur, B. Thakur and H.K. Sharma. 2021. Antibacterial potential of hive bees honey from Himachal Pradesh, India. Arch. Microbiol. 203:5029-5041.
49. Aghamirlou, H.M., M. Khadem, A. Rahmani, M. Sadeghian, A.H. Mahvi, A. Akbarzadeh and S. Nazmara. 2015. Heavy metals determination in honey samples using inductively coupled plasma-optical emission spectrometry. J. Environ. Health Sci. Eng. 13:1-8.
50. Ruiz-Navajas, Y., M. Viuda-Martos, J. Fernández-López, J.M. Zaldivar-Cruz, V. Kuri and J.Á. Pérez-Álvarez. 2011. Antioxidant activity of artisanal honey from Tabasco, Mexico. Int. J. Food Prop. 14:459-470.
51. Noor, N., R.A. Sarfraz, S. Ali and M. Shahid. 2014. Antitumour and antioxidant potential of some selected Pakistani honeys. Food Chem. 143:362-366.
52. Taormina, P.J., B.A. Niemira and L.R. Beuchat. 2001. Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int. J. Food Microbiol. 69:217-225.
53. Majtan, J. 2014. Honey: An immunomodulator in wound healing. Wound Repair Regen. 22:187-192.
54. Gündoğdu, E., S. Çakmakçı and İ.G. Şat. 2019. An overview of honey: Its composition, nutritional and functional properties. J. Food Sci. Eng. 9:10-14.
55. Aljedani, D.M. 2017. Determination of some heavy metals and elements in honeybee and honey samples from Saudi Arabia. Entomol. Appl. Sci. Lett. 4:1-11.
56. Batu, A., R.E. Aydoğmuş, K. Bayrambaş, A. Eroğlu, E. Karakavuk and Z. Eroğlu. 2014. Changes in Brix, pH and total antioxidants and polyphenols of various honeys stored in different temperatures. J. Food Agric. Environ. 12:281-285.
57. Mesele, T.L. 2021. Review on physico-chemical properties of honey in Eastern Africa. J. Apicult. Res. 60:33-45.
58. Czipa, N., M. Borbély and Z. Győri. 2012. Proline content of different honey types. Acta Aliment. 41:26-32.
59. Wen, Y.Q., J. Zhang, Y. Li, L. Chen, W. Zhao, J. Zhou and Y. Jin. 2017. Characterization of Chinese unifloral honeys based on proline and phenolic content as markers of botanical origin, using multivariate analysis. Mol. 22:735-739.
60. Noor, A., M. Mahmud, A. Ahmad and R. Arfah. 2019. Amino acids characterization of forest honeys from some area of South Sulawesi. J. Phys.: Conf. Ser. 1341:1-8.
61. Guler, A., A.V. Garipoglu, H. Onder, S. Biyik, H. Kocaokutgen and D. Ekinci. 2017. Comparing biochemical properties of pure and adulterated honeys produced by feeding honeybees (Apis mellifera L.) colonies with different levels of industrial commercial sugars. Kafkas. Univ. Vet. Fak. Derg. 23:259-268.
62. Chua, L.S., N.L. Abdul-Rahaman, M.R. Sarmidi and R. Aziz. 2012. Multi-elemental composition and physical properties of honey samples from Malaysia. Food Chem. 135:880-887.
63. Samarghandian, S., T. Farkhondeh and F. Samini. 2017. Honey and health: A review of recent clinical research. Pharmacognosy Res. 9:121-127.
64. FSSAI (Food Safety and Standards Authority of India). 2018. Indian standards: Honey. Available at: https://fssai.gov.in/upload/advisories/2020/07/5efdda224e4d2Dire ction_FSS_Operationalization_FPS_FA_02_07_2020.pdf. Accessed on: 23th August, 2023.
65. Shapla, U.M., M. Solayman, N. Alam, M. Khalil and S.H. Gan. 2018. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem. Central J. 12:1-18.
66. Bilandžić, N., M. Ðokić, M. Sedak, I. Varenina, B.S. Kolanović, A. Končurat, B. Šimić and N. Rudan. 2012. Content of five trace elements in different honey types from Koprivnica-Kri Evci County. Slov Vet Res. 49:167-175.