ULTRASTRUCTURAL CHANGES IN NEURONS EXPOSED TO CHRONIC STRESS

Main Article Content

Aisha Sayyeda
Dr Qurat ul ain Khan
Gulraiz Karim Rind Baloch
Dr Sarah Sughra Asghar
Farah Malik
Dr Hira Naeem
Dr Afsheen Mansoor
Emaan Mansoor

Keywords

.

Abstract

Background: Chronic stress is known to induce profound alterations in neuronal structure, potentially underpinning cognitive and emotional dysfunction observed in affected individuals. Objective: This electron microscopic study aimed to characterize ultrastructural changes in neurons exposed to chronic stress.


Methodology: Twenty-five male Wistar rats were subjected to daily restraint stress for 6 weeks, followed by perfusion fixation and brain tissue processing for transmission electron microscopy (TEM). Ultra-thin sections of prefrontal cortex and hippocampus were analyzed for synaptic morphology, dendritic structure, and mitochondrial integrity using ImageJ software. Quantitative comparisons between stressed and control groups were made using appropriate statistical tests, adhering to ethical guidelines for animal research.


Results: Data were collected from 25 rats in this experimental design study. In the Elevated Plus Maze, the stressed group spent less time in the open arms (150 ± 15 seconds) compared to the control group (300 ± 20 seconds). Similarly, in the Open Field Test, the stressed group spent less time in the center (90 ± 12 seconds) than the control group (180 ± 18 seconds). Synaptic density in the prefrontal cortex was lower in the stressed group (0.55 ± 0.04 synapses/µm²) than in the control group (0.80 ± 0.05 synapses/µm²), with a p-value of <0.01. Similarly, in the hippocampus, the stressed group had reduced synaptic density (0.60 ± 0.03 synapses/µm²) compared to the control group (0.85 ± 0.04 synapses/µm²), also with a p-value of <0.01.


Conclusion: It is concluded that chronic stress induces significant ultrastructural changes in neurons, particularly in the prefrontal cortex and hippocampus. 

Abstract 81 | Pdf Downloads 27

References

1. Baka, J., Csakvari, E., Huzian, O., Dobos, N., Siklos, L., Leranth, C., et al. (2017). Stress induces equivalent remodeling of hippocampal spine synapses in a simulated postpartum environment and in a female rat model of major depression. Neuroscience 343, 384–397. doi: 10.1016/j.neuroscience.2016.12.021
2. Csabai, D., Seress, L., Varga, Z., Ábrahám, H., Miseta, A., Wiborg, O., et al. (2017). Electron microscopic analysis of hippocampal axo-somatic synapses in a chronic stress model for depression. Hippocampus 27, 17–27. doi: 10.1002/hipo.22650
3. Elsworth, J. D., Leranth, C., Redmond, D. E. Jr., and Roth, R. H. (2013). Loss of asymmetric spine synapses in prefrontal cortex of motor-asymptomatic, dopamine-depleted, cognitively impaired MPTP-treated monkeys. Int. J. Neuropsychopharmacol. 16, 905–912. doi: 10.1017/S1461145712000892
4. Csabai, D., Wiborg, O., & Czéh, B. (2018). Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression. Frontiers in Cellular Neuroscience, 12, 306275. https://doi.org/10.3389/fncel.2018.00024
5. Christoffel DJ, Golden SA, Russo SJ. Structural and synaptic plasticity in stress-related disorders. Rev Neurosci. 2011;22(5):535-49. doi: 10.1515/RNS.2011.044. PMID: 21967517; PMCID: PMC3212803.
6. Khan, Ahmad Raza, Lili Geiger, Ove Wiborg, and Boldizsár Czéh. 2020. "Stress-Induced Morphological, Cellular and Molecular Changes in the Brain—Lessons Learned from the Chronic Mild Stress Model of Depression" Cells 9, no. 4: 1026. https://doi.org/10.3390/cells9041026
7. Shepard, R.; Coutellier, L. Changes in the Prefrontal Glutamatergic and Parvalbumin Systems of Mice Exposed to Unpredictable Chronic Stress. Mol. Neurobiol. 2018, 55, 2591–2602.
8. Holmes, S.E.; Scheinost, D.; Finnema, S.J.; Naganawa, M.; Davis, M.T.; DellaGioia, N.; Nabulsi, N.; Matuskey, D.; Angarita, G.A.; Pietrzak, R.H.; et al. Lower synaptic density is associated with depression severity and network alterations. Nat. Commun. 2019, 10, 1–10.
9. Bollinger, J.L.; Bergeon Burns, C.M.; Wellman, C.L. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex. Brain. Behav. Immun. 2016, 52, 88–97.
10. Wohleb, E.S.; Terwilliger, R.; Duman, C.H.; Duman, R.S. Stress-Induced Neuronal Colony Stimulating Factor 1 Provokes Microglia-Mediated Neuronal Remodeling and Depressive-like Behavior. Biol. Psychiatry 2018, 83, 38–49.
11. Liu, J.; Dietz, K.; Hodes, G.E.; Russo, S.J.; Casaccia, P. Widespread transcriptional alternations in oligodendrocytes in the adult mouse brain following chronic stress. Dev. Neurobiol. 2018, 78, 152–162
12. Yin, Y.; Wang, M.; Wang, Z.; Xie, C.; Zhang, H.; Zhang, H.; Zhang, Z.; Yuan, Y. Decreased cerebral blood flow in the primary motor cortex in major depressive disorder with psychomotor retardation. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2018, 81, 438–444.
13. Magalhães, R.; Barrière, D.A.; Novais, A.; Marques, F.; Marques, P.; Cerqueira, J.; Sousa, J.C.; Cachia, A.; Boumezbeur, F.; Bottlaender, M.; et al. The dynamics of stress: A longitudinal MRI study of rat brain structure and connectome. Mol. Psychiatry 2018, 23, 1998–2006
14. Van Velzen, L.S.; Kelly, S.; Isaev, D.; Aleman, A.; Aftanas, L.I.; Bauer, J.; Baune, B.T.; Brak, I.V.; Carballedo, A.; Connolly, C.G.; et al. White matter disturbances in major depressive disorder: A coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol. Psychiatry 2019, 1–15, [Epub ahead of print].
15. Kamiya, K.; Okada, N.; Sawada, K.; Watanabe, Y.; Irie, R.; Hanaoka, S.; Suzuki, Y.; Koike, S.; Mori, H.; Kunimatsu, A.; et al. Diffusional kurtosis imaging and white matter microstructure modeling in a clinical study of major depressive disorder. NMR Biomed. 2018, 31, 1–14.
16. Lawson, R.P.; Nord, C.L.; Seymour, B.; Thomas, D.L.; Dayan, P.; Pilling, S.; Roiser, J.P. Disrupted habenula function in major depression. Mol. Psychiatry 2017, 22, 202–208.
17. Shen, X.F.; Yuan, H.B.; Wang, G.Q.; Xue, H.; Liu, Y.F.; Zhang, C.X. Role of DNA hypomethylation in lateral habenular nucleus in the development of depressive-like behavior in rats. J. Affect. Disord. 2019, 252, 373–381.
18. Faron-Górecka, A.; Kuśmider, M.; Kolasa, M.; Zurawek, D.; Szafran-Pilch, K.; Gruca, P.; Pabian, P.; Solich, J.; Papp, M.; Dziedzicka-Wasylewska, M. Chronic mild stress alters the somatostatin receptors in the rat brain. Psychopharmacology (Berlin) 2016, 233, 255–266.
19. Fee, C.; Banasr, M.; Sibille, E. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives. Biol. Psychiatry 2017, 82, 549–559.
20. Burgos, K.; Malenica, I.; Metpally, R.; Courtright, A.; Rakela, B.; Beach, T.; Shill, H.; Adler, C.; Sabbagh, M.; Villa, S.; et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS ONE 2014, 9, e94839.
21. Zurawek, D.; Kusmider, M.; Faron-Gorecka, A.; Gruca, P.; Pabian, P.; Solich, J.; Kolasa, M.; Papp, M.; Dziedzicka-Wasylewska, M. Reciprocal MicroRNA Expression in Mesocortical Circuit and Its Interplay with Serotonin Transporter Define Resilient Rats in the Chronic Mild Stress. Mol. Neurobiol. 2017, 54, 5741–5751

Most read articles by the same author(s)