PLANT MICROBE INTERACTIONS, BIOTROPHIC STRUCTURE AND PLANT DEFENSE MECHANISMS – A COMPREHENSIVE REVIEW
Main Article Content
Keywords
Biotrophic, Eukaryotes, Necrotrophic, Pathogens, Receptor-like kinases
Abstract
Biotrophic pathogens get supplements from living cells by keeping up have reasonability. This host maintenance continues through profoundly particular auxiliary and biochemical relations. Hemibiotrophic plant pathogens initially build up a biotrophic connection with the host plant and later change to a dangerous necrotrophic way of life. Investigations of biotrophic pathogens have demonstrated that they effectively smother plant protections after an underlying organism related sub-atomic example activated enactment. Plant receptor-like kinases (RLKs) work in differing flagging pathways, remembering the reactions to microbial signs for beneficial interaction and protection. This versatility is practiced with a run of the mill for the most part structure: an extra cytoplasmic space (ectodomain) and an intracellular protein kinase territory drew in with downstream sign transduction. Customized cell passing (PCD) is fundamental for appropriate development, improvement, and cell homeostasis in all eukaryotes. The guideline of PCD is of focal significance in plant-organism connections; outstandingly, PCD and highlights related with PCD are seen in many host opposition reactions. In this way, the gathering in charge of PCD has an unmistakable bit of leeway in these fights.
References
2. Chowdhury, S., Basu, A. & Kundu, S. (2017). Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Sci Rep 7, 17251 https://doi.org/10.1038/s41598-017-17248-7
3. Pradhan, A., Ghosh, S., Sahoo, D. et al. F (2021). ungal effectors, the double edge sword of phytopathogens. Curr Genet 67, 27–40. https://doi.org/10.1007/s00294-020-01118-3
4. Saharan, G.S., Mehta, N.K., Meena, P.D. (2019). Infection, Pathogenesis, and Disease Cycle. In: Powdery Mildew Disease of Crucifers: Biology, Ecology and Disease Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-9853-7_4
5. Singh, G., Yadav, M., Ghosh, C., & Rathore, J. S. (2021). Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. Cur Res Microb Sci 2, 100047. https://doi.org/10.1016/j.crmicr.2021.100047
6. Gebrie, S.A. (2016), Biotrophic Fungi Infection and Plant Defense Mechanism 10.4172/2157-7471.1000378.
7. Gan, P.H.P., Dodds, P.N., Hardham, A.R. (2012). Plant Infection by Biotrophic Fungal and Oomycete Pathogens. In: Perotto, S., Baluška, F. (eds) Signaling and Communication in Plant Symbiosis. Signaling and Communication in Plants, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20966-6_8
8. Seybold, H., Demetrowitsch, T.J., Hassani, M.A. et al. (2020). A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat Commun 11, 1910. https://doi.org/10.1038/s41467-020-15633-x
9. Bosurgi, L., & Rothlin, C. V. (2021). Management of cell death in parasitic infections. Sem Immunopathol 43(4), 481–492. https://doi.org/10.1007/s00281-021-00875-8
10. Giraldo, M., Valent, B. (2013). Filamentous plant pathogen effectors in action. Nat Rev Microbiol 11, 800–814. https://doi.org/10.1038/nrmicro3119
11. Minina, E.A., Dauphinee, A.N., Ballhaus, F. et al. (2021). Apoptosis is not conserved in plants as revealed by critical examination of a model for plant apoptosis-like cell death. BMC Biol 19, 100. https://doi.org/10.1186/s12915-021-01018-z
12. Selinski, J., & Scheibe, R. (2021). Central Metabolism in Mammals and Plants as a Hub for Controlling Cell Fate. Antioxid Redox Signal 34(13), 1025–1047. https://doi.org/10.1089/ars.2020.8121
13. Yu, L., Chen, Y., & Tooze, S. A. (2018). Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 14(2), 207–215. https://doi.org/10.1080/15548627.2017.1378838
14. Liang, X. & Zhou, J.M. (2018). Receptor-like cytoplasmic kinases: Central players in plant receptor kinase-mediated signaling. Annu Rev Plant Biol. 29;69:267-299. doi: 10.1146/annurev-arplant-042817-040540.
15. Pradhan, A., Ghosh, S., Sahoo, D. et al. (2021). Fungal effectors, the double edge sword of phytopathogens. Curr Genet 67, 27–40. https://doi.org/10.1007/s00294-020-01118-3
16. Lyu, D., Msimbira, L. A., Nazari, M., Antar, M., Pagé, A., Shah, A., Monjezi, N., Zajonc, J., Tanney, C. A. S., Backer, R., & Smith, D. L. (2021). The Coevolution of Plants and Microbes Underpins Sustainable Agriculture. Microorganisms, 9(5), 1036. https://doi.org/10.3390/microorganisms9051036
17. Dodds, P. & Rathjen, J. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11, 539–548. https://doi.org/10.1038/nrg2812
18. Nazarov, P. A., Baleev, D. N., Ivanova, M. I., Sokolova, L. M., & Karakozova, M. V. (2020). Infectious Plant Diseases: Etiology, Current Status, Problems and Prospects in Plant Protection. Acta Naturae, 12(3), 46–59. https://doi.org/10.32607/actanaturae.11026
19. Ohm, R.A., Feau, N., Henrissat, B., Schoch, C.L., Horwitz, B.A., et al. (2012). Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLOS Pathogens 8(12): e1003037. https://doi.org/10.1371/journal.ppat.1003037
20. van Esse HP, Van't Klooster JW, Bolton MD, Yadeta KA, van Baarlen P, Boeren S, Vervoort J, de Wit PJ, Thomma BP. (2008). The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell. 20(7):1948-63. doi: 10.1105/tpc.108.059394.
21. van Esse, H. P., Van't Klooster, J. W., Bolton, M. D., Yadeta, K. A., van Baarlen, P., Boeren, S., Vervoort, J., de Wit, P. J., & Thomma, B. P. (2008). The Cladosporium fulvum Virulence Protein Avr2 Inhibits Host Proteases Required for Basal Defense, The Plant Cell, 20(7): 1948–1963, https://doi.org/10.1105/tpc.108.059394
22. Schipper, K., Doehlemann, G. (2012). Compatibility in Biotrophic Plant–Fungal Interactions: Ustilago maydis and Friends. In: Perotto, S., Baluška, F. (eds) Signaling and Communication in Plant Symbiosis. Signaling and Communication in Plants, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20966-6_9
23. Lanver, D., Müller, A. N., Happel, P., Schweizer, G., Haas, F. B., Franitza, M., Pellegrin, C., Reissmann, S., Altmüller, J., Rensing, S. A., & Kahmann, R. (2018). The Biotrophic Development of Ustilago maydis Studied by RNA-Seq Analysis. The Plant cell, 30(2), 300–323. https://doi.org/10.1105/tpc.17.00764
24. Spanu, P.D. (2014). The Genomes of the Cereal Powdery Mildew Fungi, Blumeria graminis. In: Dean, R., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Fungi: Monocot Pathogens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44053-7_7
25. Wicker, T., Oberhaensli, S., Parlange, F. et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat Genet 45, 1092–1096 (2013). https://doi.org/10.1038/ng.2704
26. Polonio, Á., Pérez-García, A., Martínez-Cruz, J., Fernández-Ortuño, D., de Vicente, A. (2020). The Haustorium of Phytopathogenic Fungi: A Short Overview of a Specialized Cell of Obligate Biotrophic Plant Parasites. In: Cánovas, F.M., Lüttge, U., Risueño, MC., Pretzsch, H. (eds) Progress in Botany Vol. 82. Progress in Botany, vol 82. Springer, Cham. https://doi.org/10.1007/124_2020_45
27. Qiu, W., Feechan, A., & Dry, I. (2015). Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture research, 2, 15020. https://doi.org/10.1038/hortres.2015.20
28. Koeck, M., Hardham, A. R., & Dodds, P. N. (2011). The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cellular microbiology, 13(12), 1849–1857. https://doi.org/10.1111/j.1462-5822.2011.01665.x
29. Petre, B. & Kamoun, S. (2014) How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells? PLoS Biol 12(2): e1001801. https://doi.org/10.1371/journal.pbio.1001801
30. Fernando W. G. (2012). Plants: An International Scientific Open Access Journal to Publish All Facets of Plants, Their Functions and Interactions with the Environment and Other Living Organisms. Plants (Basel, Switzerland), 1(1), 1–5. https://doi.org/10.3390/plants1010001
31. Moënne-Loccoz, Y., Mavingui, P., Combes, C., Normand, P., & Steinberg, C. (2014). Microorganisms and Biotic Interactions. Environmental Microbiology: Fundamentals and Applications: Microbial Ecology, 395–444. https://doi.org/10.1007/978-94-017-9118-2_11
32. Dickman, M.B. & Fluhr, R. (2013), Centrality of Host Cell Death in Plant-Microbe Interactions. Annu Rev Phytopathol. 51:543-70. doi: 10.1146/annurev-phyto-081211-173027
33. Craine, J.M. and Dybzinski, R. (2013), Mechanisms of plant competition for nutrients, water and light. Funct Ecol, 27: 833-840. https://doi.org/10.1111/1365-2435.12081
34. Delaye, L., García-Guzmán, G. & Heil, M. Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits?. Fung Diver 60, 125–135 (2013). https://doi.org/10.1007/s13225-013-0240-y
35. Geeta, Mishra, R. (2018). Fungal and Bacterial Biotrophy and Necrotrophy. In: Singh, A., Singh, I. (eds) Molecular Aspects of Plant-Pathogen Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-10-7371-7_2
36. Tecon, R., & Or, D. (2017). Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev. 41(5), 599–623. https://doi.org/10.1093/femsre/fux039
37. Philippot, L., Raaijmakers, J., Lemanceau, P. et al. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11, 789–799 https://doi.org/10.1038/nrmicro3109
38. Spanu, P. D., & Panstruga, R. (2017). Editorial: Biotrophic Plant-Microbe Interactions. Front Plant Sci 8, 192. https://doi.org/10.3389/fpls.2017.00192
39. Pumplin, N., & Harrison, M. J. (2009). Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol, 151(2), 809–819. https://doi.org/10.1104/pp.109.141879
40. Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-pathogen effectors: Cellular probes interfering with plant defenses in spatial and temporal manners. Ann Rev Phytopathol, 54, 419–441. https://doi.org/10.1146/annurev-phyto-080615-100204
41. Jha, P., Panwar, J. & Jha, P.N. (2018). Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture. Environ Sustain 1, 25–38. https://doi.org/10.1007/s42398-018-0011-5
42. Pieterse, C., Leon-Reyes, A., Van der Ent, S. et al. Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5, 308–316 (2009). https://doi.org/10.1038/nchembio.164
43. Boudouresque, CF., Caumette, P., Bertrand, JC., Normand, P., Sime-Ngando, T. (2015). Systematic and Evolution of Microorganisms: General Concepts. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_5
44. Charkowski, A.O. (2016). Opportunistic Pathogens of Terrestrial Plants. In: Hurst, C. (eds) The Rasputin Effect: When Commensals and Symbionts Become Parasitic. Advances in Environmental Microbiology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-28170-4_7
45. Egan, J., Sharman, R., Scott-Brown, K. et al. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief. Sci Rep 6, 38274 (2016). https://doi.org/10.1038/srep38274
46. Teixeira, P. J., Thomazella, D. P., Reis, O., do Prado, P. F., do Rio, M. C., Fiorin, G. L., José, J., Costa, G. G., Negri, V. A., Mondego, J. M., Mieczkowski, P., & Pereira, G. A. (2014). High-resolution transcript profiling of the atypical biotrophic interaction between Theobroma cacao and the fungal pathogen Moniliophthora perniciosa. The Plant Cell, 26(11), 4245–4269. https://doi.org/10.1105/tpc.114.130807
47. Künstler, A., Bacsó, R., Hafez, Y.M., Király, L. (2015). Reactive Oxygen Species and Plant Disease Resistance. In: Gupta, D., Palma, J., Corpas, F. (eds) Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_11
48. Saur, I.M.L., Panstruga, R. & Schulze-Lefert, P. NOD-like receptor-mediated plant immunity: from structure to cell death. Nat Rev Immunol 21, 305–318 (2021). https://doi.org/10.1038/s41577-020-00473-z
49. Kumar Bharathkar, S., Parker, B. W., Malyutin, A. G., Haloi, N., Huey-Tubman, K. E., Tajkhorshid, E., & Stadtmueller, B. M. (2020). The structures of secretory and dimeric immunoglobulin A. eLife, 9, e56098. https://doi.org/10.7554/eLife.56098
50. Escoll, P., Mondino, S., Rolando, M. et al. Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat Rev Microbiol 14, 5–19 (2016). https://doi.org/10.1038/nrmicro.2015.1
51. Bari, R., Jones, J.D.G. Role of plant hormones in plant defence responses. Plant Mol Biol 69, 473–488 (2009). https://doi.org/10.1007/s11103-008-9435-0
52. Turner, T.R., James, E.K. & Poole, P.S. The plant microbiome. Genome Biol 14, 209 (2013). https://doi.org/10.1186/gb-2013-14-6-209