NANO-ENABLED SYSTEMS FOR THE DELIVERY OF BERBERINE
Main Article Content
Keywords
Berberine, Herbal Medicines, Nanoparticles, Co-delivery Systems, Cancer therapy
Abstract
Berberine (BBR) is an alkaloid that belongs to isoquinoline functional group which is further classified as protoberberines. From ancient times it has been utilized in hyperlipidaemia & diabetes type II. Various studies performed on Berberine has proved it acts as anticancer by mode of cell necrosis. Due to poor water solubility & minimal bioavailability Berberine fails as effective chemotherapeutic agent. The drug has been combined with other antineoplastic agents to improve activity, but the results were not impressive. Use of adjuvant therapy cannot withstand in today’s era, as co-administration may further lead to pharmacological complication in biological system. Nanosizing of Berberine as single bullet or in combination with well-known antineoplastic agent can help to improve distribution & target-based release of chemotherapeutic agents into carcinogenic tissue. In this chapter detailed description, ancient background of Berberine & its application as antineoplastic delineate & importance of nano enabled Berberine is summarized.
References
2] Wang N, Tan H, Li L, Yuen M, Feng Y. (2015) Berberine and Coptidis Rhizoma as Potential Anticancer Agents: Recent Updates and Future Perspectives. J Ethnopharmacol. 176:35-48. http://dx.doi.org/10.1016/j.jep.2015.10.028.
3] Indian barberry: available from http://www.flowersofindia.net/catalog/slides/Indian%20Barberry.htl. (Accessed on 27th Feb 2021).
4] Spinozzi S, Colliva C, Camborata C, Roberti M, Ianni C, Neri F, et al. (2014) Berberine and Its Metabolites: Relationship between Physicochemical Properties and Plasma Levels after Administration to Human Subjects. J Nat. Prod. 77: 766-772. https://doi.org/10.1021/np400607k.
5] Battu SK, Repka MA, Maddineni S, Chittiboyina AG, Avery MA, Majumdar S. (2010) Physicochemical Characterization of Berberine Chloride: A Perspective in the Development of a Solution Dosage Form for Oral Delivery. AAPS Pharm Sci Tech 11:1466–1475. 10.1208/s12249-010-9520-y.
6] Wang Kun, et al. (2017): "The metabolism of Berberine and its contribution to the pharmacological effects." Drug Metab Rev 49: 139-157. 10.1080/03602532.2017.1306544.
7] Govindachari TR, Nagarajan K. (1970) Studies in protoberberine alkaloids: Part I. New synthesis of tetrahydro berberine & epiberberine. Indian Journal of Chemistry. 8: 763-765. http://repository.ias.ac.in/93465/.
8] Govindachari TR, Nagarajan K. (1970). Studies in protoberberine alkaloids. Part II. Structures of isooxyberberine and isooxyepiberberine Indian Journal of Chemistry. 8: 766-768. http://repository.ias.ac.in/93466/.
9] Govindachari TR, Nagarajan K. (1970) Studies in protoberberine alkaloids: Part III. Stereochemistry of γ3-stereochemistry of methyl protoberberine." Indian Journal of Chemistry. 8: 769-771. http://repository.ias.ac.in/93467/.
10] Govindachari TR, Nagarajan K. (1971). Studies in protoberberine alkaloids: Part IV. Synthesis of 13-Methyl-Ψ-coptisine." Indian Journal of Chemistry. 9: 1313-1315. http:// repository.ias.ac.in/93472/.
11] Kumar K, Raut SP, Mishra SK. (2008). Estimation of Berberine in ayurvedic formulations containing Berberis aristata. J of AOAC Int. 91:1149–53. https://doi.org/10.1093/ jaoac/91.5.1149.
12] Gupta M, Shaw BP. (2009). Uses of medicinal plants in panchakarma ayurvedic therapy. Ind J Trad Know. 8:372–378. http://nopr.niscair.res.in/handle/123456789/5079.
13] Mitra MP, Saumya D, Sanjita D, Kumar DM (2011). Phyto-pharmacology of berberis aristata dc: a review. J Drug Deliv Ther. 1:46–50. https://doi.org/10.22270/jddt.v1i2.34.
14] Wongbutdee J. (2009). Physiological Effects of Berberine. Thai Pharm Heal Sci J.4:78–83. http://ejournals.swu.ac.th/index.php/pharm/article/view/2668.
15] Gao Y, Wang F, Song Y, Liu H. (2020) The status of and trends in the pharmacology of Berberine: a bibliometric review [1985 – 2018]. Chin Med. 15:1–13. https://doi.org/10.1186/s13020-020-0288-z.
16] Hahn FE, Ciak J, A LCH, States U. (1975) Berberine. Mech action Antimicrob antitumor agents. 578–584. https://doi.org/10.1007/978-3-642-46304-4_38.
17] Deepak P, Biswasroy P, and Suri KA. (2013). Isolation of Berberine from Berberis vulgaris Linn. and standardization of aqueous extract by RP-HPLC. Int J Herb Med. 1: 106-111. https://www.florajournal.com/vol1issue2/20.1.html.
18] Kim, Jung-Bae. (2013) Isolation of Berberine from the Rhizome of the Coptis chinensis by centrifugal partition chromatography." The Korean J of Food Nutrition 24: 617-621. https://doi.org/10.9799/ksfan.2011.24.4.617.
19] Feng, Xiaojun, (2019). Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics. Theranostics 9: 1923-1957. 10.7150/thno.30787.
20] Lau, Chi‐Wai, et al. (2001) Cardiovascular actions of Berberine. Cardiovascular drug reviews. 19: 234-244. 10.1111/j.1527-3466.2001.tb00068.x.
21] Lu, Zengsheng, et al. (2020). Anti-inflammatory activity of Berberine in non-alcoholic fatty liver disease via the Angptl2 pathway. BMC immunology. 21: 1-9. https://doi.org/10.1186/s12865-020-00358-9.
22] Pund S, Ganesh B, and Ganesh R. (2014). Improvement of anti-inflammatory and anti-angiogenic activity of Berberine by novel rapid dissolving nanoemulsifying technique. Phytomedicine. 21: 307-314. 10.1016/j.phymed.2013.09.013.
23] Oshima N et al. (2018). Quantitative analysis of the anti-inflammatory activity of orengedokuto II: Berberine is responsible for the inhibition of NO production. J Nat Med. 72: 706-714. 10.1007/s11418-018-1209-7.
24] Li Z et al. (2014). Antioxidant and anti-inflammatory activities of Berberine in the treatment of diabetes mellitus. Evid Based Complement Alternat Med. 289264. https://doi.org/10.1155/2014/289264.
25] Čerňáková, M., and D. Košťálová. (2002). Antimicrobial activity of Berberine—A constituent of Mahonia aquifolium. Folia microbiologica 47: 375-378. https://doi.org/10.1007/ BF02818693.
26] Yin, Jun, et al. (2002). Effects of Berberine on glucose metabolism in vitro. Metabolism-clinical and Experimental. 51: 1439-1443. https://linkinghub.elsevier.com/retrieve/ pii/S002604950 2001117.
27] Leng, San-hua, Fu-Er Lu, and Li-jun Xu. (2004). Therapeutic effects of Berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacologica Sinica 25: 496-502. http://www.chinaphar.com/article/view/8109/8652.
28] Zhang, Qian, et al. (2011) Berberine moderates glucose and lipid metabolism through multi pathway mechanism. Evid Based Complement Alternat Med. 924851 https://doi.org/10.1155/2011/924851.
29] Zhao, Li, et al. (2017) Berberine improves glucogenesis and lipid metabolism in non-alcoholic fatty liver disease. BMC endocrine disorders. 17: 1-8. 0.1186/s12902-017-0165-7.
30] Sahebkar, Amirhossein, and Gerald F. Watts. (2017) Mode of action of Berberine on lipid metabolism: a new–old phytochemical with clinical applications. Current opinion in lipidology. 28: 282-283. 10.1097/MOL.0000000000000409.
31] Jun Y Ming-Dao C., and Jin-feng. T. (2004). Effects of Berberine on glucose and lipid metabolism in animal experiment. Chinese J of Diabetes. 12: 215-218. https://europepmc.org/article/cba/587036.
32] Kulkarni SK, Ashish D (2010) Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytotherapy Research. 24: 317-324. 10.1002/ptr.2968.
33] Fan, Jie, et al. (2019) Pharmacological effects of Berberine on mood disorders. J Cell Mol Med. 23: 21-28. 10.1111/jcmm.13930.
34] Moghaddam, Hamid Kalalian, et al. (2014) Berberine ameliorate oxidative stress and astrogliosis in the hippocampus of STZ-induced diabetic rats. Molecular neurobiology. 49: 820-826. 10.1007/s12035-013-8559-7.
35] Han, Ah Mi, Hwon Heo, and Yunhee Kim Kwon. (2012) Berberine promotes axonal regeneration in injured nerves of the peripheral nervous system. J of Med Food. 15: 413-417. 10.1089/jmf.2011.2029.
36] Kim, Tae-Kyung, Young-A. Son. (2005). Effect of reactive anionic agent on dyeing of cellulosic fibers with a Berberine colorant-part 2: anionic agent treatment and antimicrobial activity of a Berberine dyeing. Dyes and Pigments. 64: 85-89. https://doi.org/10.1016 /j.dyepig.2004.04.007.
37] Bandyopadhyay, Samiran, et al. (2013). Potential antibacterial activity of Berberine against multi drug resistant enterovirulent Escherichia coli isolated from yaks (Poephagus grunniens) with haemorrhagic diarrhoea. Asian Pacific journal of tropical medicine. 6 315-319. 10.1016/S1995-7645(13)60063-2.
38] Guamán Ortiz, Luis Miguel, et al. (2014). Berberine, an epiphany against cancer. Molecules 19: 12349-12367. https://doi.org/10.3390/molecules190812349.
39] Wang, Ning, et al. (2010). Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. Journal of cellular biochemistry. 111: 1426-1436. 10.1002/jcb.22869.
40] Patil JB., Jinhee K, Jayaprakasha GK. (2010) Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway. European journal of pharmacology. 3: 70-78. 10.1016/j.ejphar.2010.07.037.
41] Park KS, Kim JB, Bae J, Park SY, Jee HG, Lee KE, Youn YK. (2012). Berberine inhibited the growth of thyroid cancer cell lines 8505C and TPC1. Yonsei Med. J. 53: 346–351. 10.3349/ymj.2012.53.2.346.
42] Park KS, Kim JB, Lee SJ; Bae J. (2012). Berberine-induced growth inhibition of epithelial ovarian carcinoma cell lines. J. Obstet. Gynaecol. Res., 38: 535–540. 10.1111/j.1447-0756.2011.01743.x.
43] Marverti G. Ligabue, A. Lombardi P. Ferrari S. Mont, M.G. Frassineti C. Costi, M.P. (2013). Modulation of the expression of folate cycle enzymes and polyamine metabolism by Berberine in cisplatin-sensitive and -resistant human ovarian cancer cells. Int. J. Oncol. 43: 1269–1280. 10.3390/ijms21124484.
44] Lin CC. Yang JS. Chen JT. Fan, S. Yu FS. Yang JL. Lu CC. Kao MC. Huang A.C, Lu HF, et al. (2007) Berberine induces apoptosis in human HSC-3 oral cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway. Anticancer Res. 27: 3371–3378, https://pubmed.ncbi.nlm.nih.gov/17970083/#:~:text=In%20conclusion%2C%20our%20data%20support,oral%20cancer%20HSC%2D3%20cells.
45] Ho YT. Lu CC, Yang JS. Chiang, JH. Li TC. Ip SW. Hsia, TC. Liao CL. Lin JG. Wood WG. et al. (2009). Berberine induced apoptosis via promoting the expression of caspase-8, -9 and -3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cells. Anticancer Res. 29:4063–4070. https://ar.iiarjournals.org/content/ 29/10/4063.short.
46] Choi MS. Yuk DY. Oh JH. Jung HY. Han SB. Moon DC. Hong, J.T. (2008). Berberine inhibits human neuroblastoma cell growth through induction of p53-dependent apoptosis. Anticancer Res.28: 3777-3784. https://pubmed.ncbi.nlm.nih.gov/19189664/#:~: text=Berberine%2C%20an%20alkaloid%2C%20has%20anti,mechanisms%20are%20not%20clear%20yet.&text=Therefore%2C%20these%20results%20showed%20that,an%20anticancer%20agent%20for%20neuroblastoma.
47] Eom KS. Hong JM. Youn MJ. So HS. Park R. Kim JM. Kim TY. (2008) Berberine induces G1 arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspases pathway. Biol. Pharm. Bull. 31: 558–562. 10.1248/bpb.31.558.
48] Tsang CM. Lau EP. Di K. Cheung PY. Hau PM. Ching YP. Wong YC. Cheung AL. Wan TS. Tong Y. et al. (2009) Berberine inhibits Rho GTPases and cell migration at low doses but induces G2 arrest and apoptosis at high doses in human cancer cells. Int. J. Mol. Med. 24, 131–138. 10.3892/ijmm_00000216.
49] Mantena SK. Sharma SD. Katiyar SK. (2006). Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis, 27: 2018–2027. 10.1093/carcin/bgl043.
50] Letasiova, S. Jantova, S. Cipak, L. Muckova, M. (2006) Berberine-antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett, 239; 254–262. 10.1016/j.canlet.2005.08.024.
51] Jantova, S.; Cipak, L.; Letasiova, S. (2007). Berberine induces apoptosis through a mitochondrial/ caspase pathway in human promonocytic U937 cells. Toxicol. In Vitro, 21: 25–31. 10.1016/j.tiv.2006.07.015.
52] Lin CC. Kao ST. Chen GW. Ho HC. Chung JG. (2006) Apoptosis of human leukemia HL-60 cells and murine leukemia WEHI-3 cells induced by Berberine through the activation of caspase-3. Anticancer Res. 26: 227–242. https://ar.iiarjournals.org/content/26/1A/227.long.
53] Mahata S. Bharti AC. Shukla S. Tyagi A. Husain SA. Das BC. (2011) Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer. 10: 39. 10.1186/1476-4598-10-39.
54] Ferruti, P. (2013). Poly (amidoamine) s: past, present, and perspectives. Journal of Polymer Science Part A: Polymer Chemistry. 51: 2319-2353. https://doi.org/10.1002/pola.26632.
55] M. Wang, M. Thanou, (2010) Targeting nanoparticles to cancer. Pharmacological research. 62: 90-99. https://doi.org/10.1016/j.phrs.2010.03.005.
56] M. Ghaffari, G. Dehghan, F. Abedi-Gaballu, S. Kashanian, B. Baradaran, J.E.N. Dolatabadi, D. Losic, (2018). Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting, European Journal of Pharmaceutical Sciences, 112: 311-330. https://doi.org/10.1016/j.ejps.2018.07.020.
57] Zhou J. Wu J. Hafdi N., Behr JP. Erbacher P. Peng L. (2006). PAMAM dendrimers for efficient siRNA delivery and potent gene silencing, Chemical communications, 2362-2364. 10.1039/b601381c.
58] S. Kheiriabad, M. Ghaffari, J.E.N. Dolatabadi, M.R. Hamblin. (2020). PAMAM Dendrimers as a Delivery System for Small Interfering RNA, RNA Interference and CRISPR Technologies, Springer, 91-106. https://experiments.springernature.com/articles/10.1007/978-1-0716-0290-4_5.
59] Majidzadeh, Hossein, et al. (2020). Nano-based delivery systems for Berberine: A modern anti-cancer herbal medicine. Colloids and Surfaces B: Biointerfaces. 194: 111188. https://doi.org/10.1016/j.colsurfb.2020.111188.
60] de Souza, Maurício Palmeira Chaves, et al. (2020). Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. International Journal of Biological Macromolecules 159: 804-822. https://doi.org/10.1016/j.ijbiomac.2020.05.104.
61] Kumar R, et al. (2020). Core–shell nanostructures: perspectives towards drug delivery applications. Journal of Materials Chemistry B 8: 8992-9027. https://doi.org/ 10.1039/D0TB01559H.
62] Liu L. Fan J. Ai G. Liu J. Luo N. Li C. Cheng Z. (2019). Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biological research, 52:37. 10.1186/s40659-019-0243-6.
63] Zhao X., Zhang J., Tong N., Chen Y., Luo Y., (2012). Protective effects of Berberine on doxorubicin-induced hepatotoxicity in mice. Biological and Pharmaceutical Bulletin. 35:796-800. 10.1248/bpb.35.796.
64] K. Ren, W. Zhang, G. Wu, J. Ren, H. Lu, Z. Li, X. Han, (2016). Synergistic anti-cancer effects of galangin and Berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells, Biomedicine & Pharmacotherapy, 84:1748-1759. 10.1016/j.biopha.2016.10.111.
65] K. Wang, C. Zhang, J. Bao, X. Jia, Y. Liang, X. Wang, M. Chen, H. Su, P. Li, J.-B. Wan, (2016). Synergistic chemo preventive effects of curcumin and Berberine on human breast cancer cells through induction of apoptosis and autophagic cell death, Scientific reports, 6: 26064. 10.1038/srep26064.
66] X. Ma, J. Zhou, C.-X. Zhang, X.-Y. Li, N. Li, R.-J. Ju, J.-F. Shi, M.-G. Sun, W.-Y. Zhao, L.-M. Mu, (2013). Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting Berberine liposomes, Biomaterials, 34: 4452-4465. 10.1016/j.biomaterials.2013.02.066.
67] Y.S. Choi, M.Y. Lee, A.E. David, Y.S. Park, (2014). Nanoparticles for gene delivery: therapeutic and toxic effects, Molecular & Cellular Toxicology, 10: 1-8. https://doi.org/10.1007/s13273-014-0001-3
68] Y. Xin, M. Yin, L. Zhao, F. Meng, L. Luo, (2017). Recent progress on nanoparticle-based drug delivery systems for cancer therapy, Cancer biology & medicine, 14: 228. https://doi.org/10.1016/j.smaim.2020.04.001
69] F. Masood, (2016). Polymeric nanoparticles for targeted drug delivery system for cancer therapy, Materials Science and Engineering: C, 60: 569-578. https://doi.org/10.1016/j.msec.2015.11.067.
70] L. Bregoli, D. Movia, J.D. Gavigan- Imedio, J. Lysaght, J. Reynolds, A. Prina-Mello, (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment, Nanomedicine: Nanotechnology, Biology and Medicine, 12: 81-103. 10.1016/j.nano.2015.08.006.
71] J. Jacob, J.T. Haponiuk, S. Thomas, S. Gopi, (2018). Biopolymer based nanomaterials in drug delivery systems: A review, Materials today chemistry, 9: 43-55. https://doi.org/10.1016/j.mtchem.2018.05.002
72] B.N. Ho, C.M. Pfeffer, A.T. Singh, (2017). Update on nanotechnology-based drug delivery systems in cancer treatment, Anticancer research, 37: 5975-5981. 10.21873/anticanres.12044.
73] H. Batra, S. Pawar, D. Bahl, (2019). Curcumin in combination with anti-cancer drugs: A nanomedicine review, Pharmacological research, 139: 91-105. 10.1016/j.phrs.2018.11.005.
74] M. Díaz, P. Vivas- Mejia, (2013). Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes, Pharmaceuticals, 6: 1361-1380. 10.3390/ph6111361.
75] N. Li, L. Zhao, L. Qi, Z. Li, Y. Luan, (2016). Polymer assembly: promising carriers as co-delivery systems for cancer therapy, Progress in Polymer Science, 58: 1-26. https://doi.org/10.1016/j.progpolymsci.2015.10.009.
76] J. Buse, A. El-Aneed, (2010). Properties, engineering and applications of lipid-based nanoparticle drug delivery systems: current research and advances, Nanomedicine, 5: 1237-1260. 10.2217/nnm.10.107.
77] V.G. Kadajji, G.V. Betageri, (2011). Water soluble polymers for pharmaceutical applications, Polymers, 3: 1972-2009. https://doi.org/10.1016/S1461-5347(98)00072-8.
78] P. Bhatnagar, M. Kumari, R. Pahuja, A. Pant, Y. Shukla, P. Kumar, K. Gupta, (2018). Hyaluronic acid grafted PLGA nanoparticles for the sustained delivery of Berberine chloride for an efficient suppression of Ehrlich ascites tumors, Drug delivery and translational research, 8: 565-579. 10.1007/s13346-018-0485-9.
79] D. Ren, (2016). Protein Nanoparticle as a Versatile Drug Delivery System in nanotechnology, J Nanomed Res, 4: 00077. 10.3390/nano9091329.
80] Q. Hu, H. Li, L. Wang, H. Gu, C. Fan, (2018). DNA nanotechnology-enabled drug delivery systems, Chemical reviews, 119: 6459-6506. https://doi.org/10.1021/acs.chemrev.7b00663.
81] Y. Wang, B. Wen, H. Yu, D. Ding, J. Zhang, Y. Zhang, L. Zhao, W. Zhang, (2018). Berberine hydrochloride-loaded chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma, Journal of biomedical nanotechnology, 14: 1486-1495. 10.1166/jbn.2018.2596.
82] Popiołek, Iwona, et al. (2019). Cellular delivery and enhanced anticancer activity of Berberine complexed with a cationic derivative of γ–cyclodextrin. Bioorganic & medicinal chemistry 27: 1414-1420. https://doi.org/10.1016/j.bmc.2019.02.042.
83] Fedlheim, Daniel L., and Colby A. Foss. (2001). Metal nanoparticles: synthesis, characterization, and applications. Biomaterials and Bionanotechnology, 527-612. https://doi.org/10.1016/B978-0-12-814427-5.00015-9.
84] Rao, CN Ramachandra, et al. (2000). Metal nanoparticles and their assemblies. Chemical Society Reviews 29: 27-35. https://doi.org/10.1039/A904518J.
85] S. Pandey, A. Mewada, M. Thakur, R. Shah, G. Oza, M. Sharon, (2013). Biogenic gold nanoparticles as fotillas to fire Berberine hydrochloride using folic acid as molecular road map, Materials Science and Engineering: C, 33: 3716-3722. 10.1016/j.msec.2013.05.007.
86] R. Bhanumathi, M. Manivannan, R. Thangaraj, S. Kannan, (2018). Drug-carrying capacity and anticancer effect of the folic acid-and Berberine-loaded silver nanomaterial to regulate the AKT-ERK pathway in breast cancer, ACS omega,3: 38317-8328. https://doi.org/10.1021/acsomega.7b01347.
87] S. Kim, S.Y. Lee, H.-J. Cho, (2018). Berberine and zinc oxide-based nanoparticles for the chemo photothermal therapy of lung adenocarcinoma, Biochemical and biophysical research communications, 501: 765-770. 10.1016/j.bbrc.2018.05.063.
88] R. Tietze, J. Zaloga, H. Unterweger, S. Lyer, R.P. Friedrich, C. Janko, M. Pöttler, S. Dürr, C. Alexiou, (2015). Magnetic nanoparticle-based drug delivery for cancer therapy, Biochemical and biophysical research communications, 468: 463-470. https://doi.org/10.3389/ fmolb.2020.00193.
89] S. Sreeja, C.K. Nair, (2018). Tumor control by hypoxia-specific chemo targeting of iron-oxide nanoparticle– Berberine complexes in a mouse model, Life sciences, 195: 71-80. 10.1016/j.lfs.2017.12.036.
90] Sharma, A.K. Goyal, G. Rath, (2018) Recent advances in metal nanoparticles in cancer therapy, Journal of drug targeting, 26: 617-632. 10.1080/1061186X.2017.1400553.
91] M. Riaz, X. Zhang, C. Lin, K. Wong, X. Chen, G. Zhang, A. Lu, Z. Yang, (2018). Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review, International journal of molecular sciences, 19: 195. 10.3390/ijms19010195.
92] J.E.N. Dolatabadi, Y. Omidi, (2016). Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems, TrAC Trends in Analytical Chemistry, 77: 100-108. https://doi.org/10.1016/j.trac.2015.12.016
93] F. Yu, M. Ao, X. Zheng, N. Li, J. Xia, Y. Li, D. Li, Z. Hou, Z. Qi, X.D. Chen, (2017). PEG–lipid–PLGA hybrid nanoparticles loaded with Berberine–phospholipid complex to facilitate the oral delivery efficiency, Drug delivery, 24: 825-833. 10.1080/10717544.2017.1321062.
94] D.R. Khan, M.N. Webb, T.H. Cadotte, M.N. Gavette, (2015). Use of targeted liposome-based chemotherapeutics to treat breast cancer, Breast cancer: basic and clinical research, 9: S29421. 10.4137/BCBCR.S29421.
95] Y.-C. Lin, J.-Y. Kuo, C.-C. Hsu, W.-C. Tsai, W.-C. Li, M.-C. Yu, H.-W. Wen, (2013). Optimizing manufacture of liposomal Berberine with evaluation of its antihepatoma effects in a murine xenograft model, International Journal of Pharmaceutics, 441: 381-388. 10.1016/j.ijpharm.2012.11.017.
96] Singh, A.K. Rehni, P. Kumar, M. Kumar, H.Y. Aboul‐Enein, (2009). Carbon nanotubes: synthesis, properties and pharmaceutical applications, Fullerenes, Nanotubes and Carbon Nanostructures, 17:361-377. https://doi.org/10.1080/15363830903008018.
97] H. Ali-Boucetta, K. Kostarelos, (2013) Pharmacology of carbon nanotubes: toxicokinetics, excretion and tissue accumulation, Advanced drug delivery reviews, 65: 2111-2119. 10.1016/j.addr.2013.10.004.
98] D.-J. Lim, M. Sim, L. Oh, K. Lim, H. Park, (2014). Carbon-based drug delivery carriers for cancer therapy, Archives of pharmacal research, 37: 43-52. 10.1007/s12272-013-0277-1.
99] F. Zhang, M. Zhang, X. Zheng, S. Tao, Z. Zhang, M. Sun, Y. Song, J. Zhang, D. Shao, K. He, (2018). Berberine-based carbon dots for selective and safe cancer theranostics, RSC advances, 8 1168- 1173. https://doi.org/10.1039/C7RA12069A.
100] C. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, (2013). Carbon-based nanomaterials: multifunctional materials for biomedical engineering, ACS nano, 7: 2891-2897. https://doi.org/10.1021/nn401196a.
101] S. Bamrungsap, Z. Zhao, T. Chen, L. Wang, C. Li, T. Fu, W. Tan, (2012). Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system, Nanomedicine, 7: 1253-1271. 10.2217/nnm.12.87.
102] K. Bhattacharya, S.P. Mukherjee, A. Gallud, S.C. Burkert, S. Bistarelli, S. Bellucci, M. Bottini, A. Star, B. Fadeel, (2016). Biological interactions of carbon-based nanomaterials: from coronation to degradation, Nanomedicine: Nanotechnology, Biology and Medicine, 12: 333-351. 0.1016/j.nano.2015.11.011.
103] M. Thakur, A. Mewada, S. Pandey, M. Bhori, K. Singh, M. Sharon, M. Sharon, (2016). Milk-derived multifluorescent graphene quantum dot-based cancer theranostic system, Materials Science and Engineering: C, 67: 468-477. https://doi.org/10.1016/j.msec.2016.05.007
104] C.-M.J. Hu, S. Aryal, L. Zhang, (2010) Nanoparticle-assisted combination therapies for effective cancer treatment, Therapeutic delivery, 1: 323-334. 10.4155/tde.10.13.
105] K. Ren, W. Zhang, G. Wu, J. Ren, H. Lu, Z. Li, X. Han, (2016). Synergistic anti-cancer effects of galangin and Berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells, Biomedicine & Pharmacotherapy, 84: 1748-1759. 10.1016/j.biopha.2016.10.111.
106] M. Srinivasan, M. Rajabi, S. Mousa, (2015). Multifunctional nanomaterials and their applications in drug delivery and cancer therapy, Nanomaterials, 5: 1690-1703. 10.3390/nano5041690.
107] George, P.A. Shah, P.S. Shrivastav, (2019). Natural biodegradable polymers-based nano-formulations for drug delivery: A review, International journal of pharmaceutics. 561: 244-264. https://doi.org/10.1016/j.ijpharm.2019.03.011.
108] J. Tuo, Y. Xie, J. Song, Y. Chen, Q. Guo, X. Liu, X. Ni, D. Xu, H. Huang, S. Yin, (2016) Development of a novel Berberine-mediated mitochondria-targeting nano-platform for drug-resistant cancer therapy, Journal of Materials Chemistry B, 4: 6856-6864. https://doi.org/10.1039/C6TB01730D.
109] F. Zhang, Y. Jia, X. Zheng, D. Shao, Y. Zhao, Z. Wang, J. Dawulieti, W. Liu, M. Sun, W. Sun, (2019). Janus nanocarrier-based co-delivery of doxorubicin and Berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence, Acta biomaterialia,.100: 352-364. https://doi.org/10.1016/j.actbio.2019.09.034.