SYSTEMATIC REVIEW ON THE EFFICACY AND SAFETY CALOTROPIS GIGANTEA

Main Article Content

Yatendra Singh
Madan Kaushik

Keywords

Calotropis gigantea, efficacy, safety, toxicity, phytoconstituents

Abstract

Ancient sage monks had very vast knowledge of traditional Indian medicine. But this knowledge is obsolete in the present scenario due to lack of clinical evidences. Calotropis gigantea is one of them, which is found in description of many traditional Indian books such as the Shiva Purana. It is an easily available Indian medicinal herb that is applied in numerous conventional medicines to manage many chronic diseases. Traditionally, it is very good anthelmintic and carminative and capable to cure cough, leprosy, and asthma. To compile this review article, we carried out a rigorous exercise to search literature related to safety and efficacy of Calotropis gigantea on PsychInfo, PubMed, Science Direct, and PLOS databases. Currently traditional and botanical application of herbal bioactive, mainly which are derived from natural source, had acquired substantial interest because of their therapeutic values and minimal toxicity to human health. Herbal flora   have been described to have therapeutic  potential attributable to their bioactive such as terpenes, steroid, glycosides, tannins, saponins, flavonoids,  alkaloids, and many more. This review examines efficacy and safety Calotropis gigantea along with their phytoconstituents.

Abstract 83 | pdf Downloads 14

References

1. Kiritikar K, Basu B. Indian Medicinal Plants. Int B Distrib.1987;III(2 Edn):1432–6.
2. Abushouk, A.I.; Negida, A.; Ahmed, H.; Abdel-Daim, M.M. Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxicity: Future applications in Parkinson’s disease. Biomed. Pharmacother. 2017, 85, 635–645.
3. Abushouk, A.I.; Ismail, A.; Salem, A.M.A.; Afifi, A.M.; Abdel-Daim, M.M. Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. Biomed. Pharmacother. 2017, 90, 935–946.
4. Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177.
5. Batiha, G.E.S.; Beshbishy, A.A.; Tayebwa, D.S.; Shaheen, M.H.; Yokoyama, N.; Igarashi, I. Inhibitory effects of Uncaria tomentosa bark, Myrtus communis roots, Origanum vulgare leaves and Cuminum cyminum seeds extracts against the growth of Babesia and Theileria in vitro. Jap. J. Vet. Parasitol. 2018, 17, 1–13.
6. Beshbishy, A.M.; Batiha, G.E.S.; Adeyemi, O.S.; Yokoyama, N.; Igarashi, I. Inhibitory effects of methanolicOlea europaea and acetonic Acacia laeta on the growth of Babesia and Theileria. Asian Pac. J. Trop. Med. 2019, 12, 425–434.
7. Yelne MB, Sharma PC, Dennis TJ. Database on Medicinal Plants used in Ayurveda, Central Council for Research in Ayurveda & Siddha, New-Delhi, 2000, 2(1): 69- 73.
8. Bairagi SM, Prashant G, Gilhotra R. Pharmacology of natural products: an recent approach on Calotropis gigantea and Calotropis procera. Ars Pharm. 2018;59(1):37–44.
9. Rahimi M. Pharmacognostical Aspects and Pharmacological activities of Calotropis procera. Bull. Env. Pharmacol. Life Sci 2015;4(2):156-2.
10. Sharma AK, Kharb R, Kaur R. Pharmacognostical aspects of Calotropis procera (Ait.) R. Br. Int J Pharma. Bio. Sci. 2011;2(3):480–8.
11. Kanchan T, Atreya A. Calotropis gigantea. Wilderness Environ Med. 2016;27(2):350-1.
12. Wang ZN, Wang MY, Mei WL, Han Z, Dai HF. A new cytotoxic pregnanone from Calotropis gigantea. Molecules 2008;13:3033–9.
13. Tripathi PK, Awasthi S, Kanojiya S, Tripathi V, Mishra DK. Callus culture and in vitro biosynthesis of cardiac glycosides from Calotropis gigantea (L.) Ait. In Vitro Cell Dev Biol-Plant. 2013;49:455–460
14. Kupchan SM, Knox JR, Kelsey JE and Renauld JAS;Calotropin, a cytotoxic principle isolated fromAsclepias curassavica L. Science, 1964, 146: 1685 – 1686.
15. Habib RM, Nikkon F and Rahaman M; Isolation of β-Sitosterol from methanolic extract of root bark of Calotropis gigantea (Linn), Pak. J. Biol. Sci, 2007: 1 –3.
16. Sen S, Sahu NP and Mahato SB; Flavonol glycosides from Calotropis gigantea, Phytochemistry, 1992, 31:2919 – 2921.
17. Crout DHG, Curtis RF and Hassall CH; Cardenolides.he constitution of calactinic acid, Journal of theAmerican Chemical Society. Part V, 1963, 347: 1866 –1975.
18. Murti PBR, Seshadri TR. Chemical composition of Calotropis gigantea. II. Wax and resin components of the stem bark. Proceedings of the Indian Academy of Sciences section 1945;A21: 8-18.
19. Habib MR, Karim MR. Antimicrobial and Cytotoxic Activity of Di-(2-ethylhexyl) Phthalate and Anhydrosophoradiol-3-acetate Isolated from Calotropis gigantea (Linn.) Flower. Mycobiology. 2009;37(1):31-36
20. Habib MR, Karim MR. Effect of anhydrosophoradiol-3-acetate of Calotropis gigantea (Linn.) flower as antitumoric agent against Ehrlich’s ascites carcinoma in mice. Pharmacological Reports 2013; 65: 761-7.
21. Habib MR, Karim MR. Evaluation of antitumour activity of Calotropis gigantea L. root bark against Ehrlich ascites carcinoma in Swiss albino mice. Asian Pac J Trop Med. 2011;4(10):786–90
22. Rathod NR, Chitme HR, Irchhaiya R, Chandra R. Hypoglycemic Effect of Calotropis gigantea Linn. Leaves and Flowers in Streptozotocin-Induced Diabetic Rats. Oman Med J. 2011;26(2):104-8.
23. Singh K, Rao V, Hussain Z, Pahuja R. Evaluation of anti-diabetic and antioxidant activity of extract of Calotropis Gigantea linn in streptozotocin induced diabetic rats. The Pharma Innovation. 2014; 2(11):1-12.
24. Kadiyala M, Ponnusankar S, Elango K. Calotropis gigantiea (L.) R. Br (Apocynaceae): a phytochemical and pharmacological review. J Ethnopharmacol. 2013;150(1):32-50.
25. Bulani VD, Ghaisas MM, Kumar D, Sarda AP, Bhamre SS. Anti-anaphylactic and mast cell stabilizing effect of Calotropis gigantea extract. Lat Am J Pharm 2011; 30 (2): 363-7
26. Bhandary MJ, Chandrashekar KR, Kaveriappa KM. Medical ethnobotany of the Siddis of Uttara Kannada district, Karnataka, India. J Ethnopharmacol. 1995;47(3):149-58.
27. Chitme HR, Chandra R, Kaushik S. Evaluation of antipyretic activity of Calotropis gigantea (Asclepiadaceae) in experimental animals. Phytother Res. 2005 ;19(5):454-6.
28. Shilpkar P, Shah M and Chaudhary DR. An alternate use of Calotropis gigantea: Biomethanation. Current science. 2007; 92(4):435-7.
29. Patil KS, Mamatha GC, Chaturvedi SC. Anti-arthritic activity of leaves of Calotropis gigantea Linn. Journal of Natural Remedies. 2007;7:189–194
30. Babu AS, Karki SS. Anti-convulsant activity of various extracts of leaves of Calotropis gigantea Linn against seizure induced models. International Journal Pharmaceutical Pharmaceutical Sciences.2011; 3(3):200–03.
31. Rathod, NR, Chitme, HR, Irchhaiya R, Chandra R. Hypoglycaemia effect of Calotropis gigantea Linn leaves and flowers in streptozotocin-Induced diabetic rats. Oman Medical Journal. 2011; 26:104–8.
32. Wang ZN, Wang MY, Mei WL, HanZ, Dai HF. A new cytotoxic pregnanone from Calotropis gigantea. Molecules. 2008;13:3033–3039.
33. Tripathi PK, AwasthiS, KanojiyaS,TripathiV,Mishra DK. Callus culture and invitro biosynthesis of cardiac glycosides from Calotropis gigantea (L.) Ait. In VitroCell Dev Biol-Plant. 2013;49:455–460.
34. Teixeria FM, Ramos MV, Soares AA, etal. Invitrotissue culture ofthemedicinalshrub Calotropis procera to produce pharmacologically activeproteins from plantlatex. Process Biochem. 2011;46:1118–1124.
35. Chitme HR, Chandra R, Kaushik S. Studiesonantidiar- rhoeal activityof Calotropis gigantea R.Br. inexperimental animals. J PharmPharmaceutSci. 2004;7:70–75.
36. Waikar S, Srivastava VK. Calotropisinducedoculartox- icity. Med J Armed ForcesIndia. 2015;71: 92–94.
37. Tour NS, Talele GS. Gastric antiulcer and anti-inflammatoryactivities of Calotropis Procera stem bark. Revista Brasileira FarmacognosiaBrazilian Journal Pharmacognosy. 2011;21(6): 1118- 1126. Doi:10.1590/S0102- 695X2011005000175.
38. Sayed AELD, Mohamed NH, Ismail MA, Abdel-Mageed WM, Shoreit AAM. Antioxidant and antiapoptotic activities of Calotropis procera latex on Catfish (Clarias gariepinus) exposed to toxic 4-nonylphenol. Ecotoxicology and Environmental Safety. 2016;128:189–94. Doi: 10.1016/j.ecoenv.2016.02.023