AN EXTENSIVE ANALYSIS OF MACHINE LEARNING METHODS FOR IDENTIFYING PLANT LEAF DISEASES

Main Article Content

Deepak Kumar Awasthi
Dr. Arvind Kumar Shukla
Ashwani Gupta

Keywords

.

Abstract

India’s economy is dependent on agriculture. Maintaining strong crop yields for food, medicine, and commercial uses is essential as the world’s second-largest population. Applications based on IT are frequently utilised for disease identification. By analysing images of different plant sections, data science-based computer vision systems are incredibly effective at detecting diseases in their early phases. It takes a lot of human skill to diagnose the condition by eye inspection, which is a difficult task in and of itself. The disease diagnosis for supervised machine learning approaches for leaf images is critically reviewed in this work. The application of supervised machine learning as a general concept is described. Based on the symptoms of a disease extracted  in the form of features, a disease in plants can be identified. Thus, feature extraction methods are crucial in these systems. There is extensive discussion of the Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF) approaches, as well as a brief discussion of relevant recent works are presented. It offers a thorough analysis of various visual characteristics for various illnesses in different atmospheric conditions. 

Abstract 115 | Pdf Downloads 29

References

1. https://tradingeconomics.com/india/rural-population-per cent-of-total-population-wb-data.html https://www.downtoearth.org.in/news/agriculture/agri-share-in-gdp-hit-20-after-17-years-economicsurvey-75271
2. Kempf V.A., Trebesius K., Autenrieth I.B. Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J. Clin. Microbiol. 2000;38:830–838. [PMC free article] [PubMed] [Google Scholar]
3. Hijri M. Plant Pathology. Springer; Berlin, Germany: 2009. The use of Fluorescent in situ hybridisation in plant-fungal identification and genotyping; pp. 131–145. [PubMed] [Google Scholar]
4. DeLong E.F., Wickham G.S., Pace N.R. Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells. Science. 1989;243:1360–1363. doi: 10.1126/science.2466341. [PubMed] [CrossRef] [Google Scholar]
5. Cai H., Caswell J., Prescott J. Nonculture molecular techniques for diagnosis of bacterial disease in animals a diagnostic laboratory perspective. Vet. Pathol. Online. 2014;51:341–350. doi:
6. 10.1177/0300985813511132. [PubMed] [CrossRef] [Google Scholar]
7. L ́opez M.M., Bertolini E., Olmos A., Caruso P., Corris M.T., Llop P., Renyalver R., Cambra M. Inno- vative tools for detection of plant pathogenic viruses and bacteria. Int. Microbiol. 2003;6:233–243. doi:
8. 10.1007/s10123-003-0143-y. [PubMed] [CrossRef] [Google Scholar]
9. Lievens B., Brouwer M., Vanachter A.C.R.C., Cammue B.P.A., Thomma B.P.H.J. Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci.
10. 2006;171:155–165. doi: 10.1016/j.plantsci.2006.03.009. [CrossRef] [Google Scholar]
11. Schaad N.W., Frederick R.D. Real-time PCR and its application for rapid plant disease diagnostics. Can.J. Plant Pathol. 2002;24:250–258. doi: 10.1080/07060660209507006. [CrossRef] [Google Scholar] [10] Van der Wolf J., van Bechhoven J.R.C.M., Bonants P.J.M., Schoen C.D. Plant Pathogenic Bacteria. Springer; Berlin, Germany: 2001. New technologies for sensitive and specific routine detection of plant pathogenic bacteria; pp. 75–77. [Google Scholar]
12. Clark M.F., Adams A. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 1977;34:475–483. doi: 10.1099/0022-1317-34-3-
13. 475. [PubMed] [CrossRef] [Google Scholar]
14. Gorris M.T., Alarcon B., Lopez M., Cambra M. Characterization of monoclonal antibodies specific for Er-winiacarotovora subsp. atroseptica and comparison of serological methods for its sensitive detection on potato tubers. Appl. Environ. Microbiol. 1994;60:2076–2085. [PMC free article] [PubMed] [Google Scholar]
15. L ́opez M.M., Llop P., Cubero J., Penyalver R., Caruso P., Bertolini E., Penalver J., Gorris M.T., Cam- bra M. Plant Pathogenic Bacteria. Springer; Berlin, Germany: 2001. Strategies for improving serological and molecular detection of plant pathogenic bacteria; pp. 83–86. [Google Scholar]
16. Chitarra L.G., van den Bulk R.W. The application of flow cytometry and fluorescent probe technology
17. For detection and assessment of viability of plant pathogenic bacteria. Eur. J. Plant Pathol. 2003;109:407–
18. 417.doi: 10.1023/A:1024275610233. [CrossRef] [Google Scholar]
19. Burling K., Hunsche M., Noga G. Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. J. Plant Physiol.
20. 2011;168:1641–1648.doi: 10.1016/j.jplph.2011.03.016. [PubMed] [CrossRef] [Google Scholar]
21. Kuckenberg J., Tartachnyk I., Noga G. Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precis.
22. Agric.2009;10:34–44. doi: 10.1007/s11119-008-9082-0. [CrossRef] [Google Scholar]
23. Chaerle L., Lenk S., Leinonen I., Jones H.G., Van Der Straeten D., Buschmann C. Multi-sensor plant imaging: Towards the development of a stress-catalogue. Biotechnol. J. 2009;4:1152–1167. doi:
24. 10.1002/biot.200800242.[PubMed] [CrossRef] [Google Scholar]
25. Cs ́efalvay L., Gaspero G.D., Matous K., Bellin D., Ruperti B., Olejnickova J. Pre-symptomatic detection of Plasmoparaviticola infection in grapevine leaves using chlorophyll fluorescence imaging. Eur.
26. J. Plant Pathol.2009;125:291–302. doi: 10.1007/s10658-009-9482-7. [CrossRef] [Google Scholar] [19] Scholes J.D., Rolfe S.A. Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: A phenomics perspective. Funct. Plant Biol. 2009;36:880–892. doi:
27. 10.1071/FP09145. [CrossRef] [Google Scholar]
28. Delalieux S., van Aardt J., Keulemans W., Schrevens E., Coppin P. Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications. Eur. J. Agron. 2007;27:130–143. doi: 10.1016/j.eja.2007.02.005. [CrossRef] [Google Scholar]
29. Kobayashi T., Kanda E., Kitada K., Ishiguro K., Torigoe Y. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology.
30. 2001;91:316–323. doi:10.1094/PHYTO.2001.91.3.316. [PubMed] [CrossRef] [Google Scholar]
31. Zhang M., Qin Z., Liu X., Ustin S.L.Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Int. J. Appl. Earth Observ. Geoinf. 2003;4:295–310. doi: 10.1016/S0303-2434(03)00008-4. [CrossRef] [Google Scholar]
32. Oerke E., Steiner U., Dehne H.W., Lindenthal M. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J. Exp. Bot. 2006;57:2121–2132. doi: 10.1093/jxb/erj170.
33. [PubMed] [CrossRef] [Google Scholar]
34. Chaerle L., Leinonen I., Jones H.G., Van Der Straeten D. Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J. Exp. Bot. 2007;58:773–784. doi:
35. 10.1093/jxb/erl257. [PubMed] [CrossRef] [Google Scholar]
36. Lindenthal M., Steiner U., Dehne H.W., Oerke E.C. Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology.
37. 2005;95:233–240. doi: 10.1094/PHYTO-95-0233. [PubMed] [CrossRef] [Google Scholar]
38. https://silks.csb.gov.in/jhansi/diseases-and-pests-of-food-plants/
39. Hallau L, Neumann M, Klatt B (2017) Automated identification of sugar beet diseases using
40. smartphones. Plant Pathol 67(2):399–410. https:// doi. org/ 10. 1111/ ijlh. 12426 \newline{}
41. WenzhuYangSileWangXiaolanZhaoJingsiZhangJiaqi Feng (2015) Greenness identification based on HSV decision tree https://www.sciencedirect.com/science/article/pii/S2214317315000347
42. Kaur S, Pandey S, Goel S (2018) Semi-automatic leaf disease detection and classification system for soybean culture. IET Image Process 12(6):1038–1048. https:// doi. org/ 10. 1049/ iet- ipr. 2017. 0822 [30]Kaur K, Marwaha C (2017) Analysis of Diseases in Fruits using Image Processing Techniques. In: Precedings of International Conference on Trends in Electronics and Informatics ICEI 201.
43. pp 183–189
44. [31]Yao Q, Guan Z, Zhou Y, Tang J, Hu Y, Yang B (2009) Application of support vector machine for detecting rice diseases using shape and color texture features. 2009 International Conference on Engineering Computation, ICEC 2009 pp 79–83. https:// doi. org/ 10. 1109/ ICEC. 2009. 73 Bai X, Li X, Fu Z, Lv X, Zhang L (2017) A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images. Comput Electron
45. Agric 136:157–165. https:// doi. org/ 10. 1016/j. compag. 2017. 03. 004
46. Asfarian A, Herdiyeni Y, Rauf A, Mutaqin KH (2013) Paddy diseases identification with texture analysis using fractal descriptors based on fourier spectrum. Proceeding - 2013 International Conference on Computer, Control, Informatics and Its Applications: Recent Challenges in Computer, Control and
47. Informatics, IC3INA 2013. pp 77–81. https:// doi. org/ 10. 1109/ IC3INA. 2013. 68191 52 [34]Bhargavi, K., and S. Jyothi. "A survey on threshold based segmentation technique in image processing." International Journal of Innovative Research and Development 3.12 (2014): 234-239.
48. Lomte, S. S., and A. P. Janwale. "Plant leaves image segmentation techniques
49. Sannakki SS, Rajpurohit VS, Nargund VB, Kulkarni P (2013) Diagnosis and Classification of Grape Leaf Diseases using Neural Networks. Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), 2013, pp 1–5
50. Sharma, Sakshi, Vatsala Anand, and Swati Singh. "Classification of Diseased Potato Leaves Using Machine Learning." 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2021.
51. https://support.echoview.com/WebHelp/Windows_and_Dialog_Boxes/Dialog_Boxes/Variable_propert ies_dialog_box/Operator_pages/GLCM_Texture_Features.html
52. Nandhini, M., V. S. Pream, and M. S. Vijaya. "Identification and classification of leaf diseases in turmeric plants." International Journal of Engineering Research and Applications 6.2 (2016): 48-54. [40]Islam, Monzurul, et al. "Detection of potato diseases using image segmentation and multiclass support vector machine." 2017 IEEE 30th canadian conference on electrical and computer engineering (CCECE). IEEE, 2017.
53. N.R.Bhimte and V. R. Thool, “Diseases Detection of Cotton Leaf Spot Using Image Processing and SVM Classifier,” 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2018, pp. 340–344.
54. Jaisakthi, S. M., P. Mirunalini, and D. Thenmozhi. "Grape leaf disease identification using machine learning techniques." 2019 International Conference on Computational Intelligence in Data Science (ICCIDS). IEEE, 2019.
55. Panigrahi, Kshyanaprava Panda, et al. "Maize leaf disease detection and classification using machine learning algorithms." Progress in Computing, Analytics and Networking. Springer, Singapore, 2020. 659669.
56. Sharma, Sakshi, Vatsala Anand, and Swati Singh. "Classification of Diseased Potato Leaves Using Machine Learning." 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2021.
57. Sabrol, H., and K. Satish. "Tomato plant disease classification in digital images using classification tree." 2016 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2016. [46]Ahmed, Kawcher, et al. "Rice leaf disease detection using machine learning techniques." 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). IEEE, 2019.
58. Rajesh, B., M. Vishnu Sai Vardhan, and L. Sujihelen. "Leaf disease detection and classification by decision tree." 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). IEEE, 2020.
59. Wan, Long, et al. "Hyperspectral Sensing of Plant Diseases: Principle and Methods." Agronomy 12.6 (2022): 1451.
60. D'hondt, Liesbet, et al. "Applications of flow cytometry in plant pathology for genome size determination, detection and physiological status." Molecular Plant Pathology 12.8 (2011): 815-828. [50]Hashim, I. C., et al. "Application of thermal imaging for plant disease detection." IOP Conference Series: Earth and Environmental Science. Vol. 540. No. 1. IOP Publishing, 2020.
61. Amalraj, Augustine, and Sreeraj Gopi. "Medicinal properties of Terminalia arjuna (Roxb.) Wight &Arn.: a review." Journal of traditional and complementary medicine 7.1 (2017): 65-78.
62. Klimek-Szczykutowicz, Marta, Agnieszka Szopa, and Halina Ekiert. "Citrus limon (Lemon) phenomenon—a review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies." Plants 9.1 (2020): 119.
63. https://www.researchgate.net/publication/304274138_Jamun_A_traditional_fruit_and_medicine
64. https://www.researchgate.net/publication/301330310_Antioxidant_and_Anti-
65. inflammatory_Activities_of_Platanus_orientalis_An_Oriental_Plant_Endemic_to_Kashmir_Planes
66. https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=34540
67. Ramesh, Shima, et al. "Plant disease detection using machine learning." 2018 International conference on design innovations for 3Cs compute communicate control (ICDI3C). IEEE, 2018.
68. Sandika, Biswas, et al. "Random forest based classification of diseases in grapes from images captured in uncontrolled environments." 2016 IEEE 13th international conference on signal processing (ICSP).
69. IEEE, 2016.
70. Panigrahi, Kshyanaprava Panda, et al. "Maize leaf disease detection and classification using machine learning algorithms." Progress in Computing, Analytics and Networking. Springer, Singapore, 2020. 659669.
71. Saha, Sristy, and Sk Md Masudul Ahsan. "Rice disease detection using intensity moments and random forest." 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD). IEEE, 2021.
72. Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272.
73. Yamamoto, K.; Guo,W.; Yoshioka, Y.; Ninomiya, S. On plant detection of intact tomato fruits using image analysis and machine learning methods. Sensors 2014, 14, 12191–12206.
74. Al Muqarrabun, L. M. R., et al. "Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: A review." Journal of ethnopharmacology 150.2 (2013): 395-420.
75. 2020[64]A. K. G. Francisco, “GitHub,” 2020 [Online]. https://github.com/aldrin233/ Rice
76. Diseases DataSet. (Accessed August 2020)
77. Al-Amri, Salem Saleh, and Namdeo V. Kalyankar. "Image segmentation by using threshold techniques." arXiv preprint arXiv:1005.4020 (2010).
78. Wang, Yu, Qian Chen, and Baeomin Zhang. "Image enhancement based on equal area dualistic subimage histogram equalization method." IEEE transactions on Consumer Electronics 45.1 (1999): 68-75.