COMPARATIVE ANALYSIS OF HISTOLOGICAL AND HEMATOLOGICAL OF CRITICAL-SIZED FEMUR FRACTURES TREATED WITH IM-PIN IN COMBINATION WITH PMMA AND CAP IN A CANINE MODEL

Main Article Content

Abdul Salam Khoso
Ahmed Nawaz Tunio
Muhammad Ghiasuddin Shah
Akeel Ahmed Memon
Atique Ahmed Behan
Mansoor Tariq
Muhammad Bilawal Arain

Keywords

critically sized, canine model, femur fracture, IM-Pin, Histological, hemato-biological

Abstract

This study aimed to assess critical-size bone defect reconstruction using polymethylmethacrylate (PMMA) and calcium phosphate (CaP) bone materials in comparison, focusing on histological, and hematological parameters. Thirty-six healthy dogs were divided into three groups, with each group receiving different treatments: intramedullary pin (IM-pin) in Group A, PMMA with IM-pin in Group B, and CaP-based bone graft material with IM-pin in Group C. Histological evaluations at various post-surgery time points revealed differences in healing responses, trabeculae formation, and osteon numbers among the groups. Group B exhibited significant growth and dense connective tissue formation, indicating a rapid healing process. IM-Pin PMMA has been recognized as the optimal implant material for femoral bone fractures in dogs, exhibiting histological advantages, including biocompatibility, corrosion resistance, and minimal bone resorption. Throughout all groups, serum calcium levels were maintained within the normal range. Hematological parameters, encompassing red blood cell (RBC) count, hemoglobin, packed cell volume (PCV), white blood cell (WBC) count, neutrophils, lymphocytes, and monocytes, were thoroughly assessed. Variations in RBC count and WBC count were observed post-surgery, with eventual normalization. Overall, this study provides valuable insights into the histological and hematological aspects of critical-size bone defect reconstruction, highlighting the effectiveness of IM-Pin PMMA and the need for long-term safety considerations in veterinary practices.

Abstract 114 | PDF Downloads 39

References

1. AYRE, W.N., S.P. DENYER, S.L. EVANS (2014). Ageing and moisture uptake in polymethyl methacrylate (PMMA) bone cements. J. Mech. Behav. Biomed. Mater. 32, 76-88. https://doi.org/10.1016/j.jmbbm.2013.12.010
2. AYYAPPAN, S., M.S. SIMON, B. DAS, A.A. PRASAD, R. KUMAR (2011). Management of diaphyseal humeral fracture using plate rod technique in a dog. Tamilandu J. Vet. Ani. Sci. 7, 35-38.
3. DUNKLEY, I.R., S.M. VICKERS, J. BADURA, J. TOTH (2018). A Histological Assessment of the Mechanism of Early-Stage Healing of a Biphasic Calcium Phosphate in an In Vivo Rabbit Model. Paper presented at the Key Engineering Materials. https://doi.org/10.4028/www.scientific.net/KEM.782.275
4. FRAKENBURG, E.P., S.A GOLDSTEIN, T.W. BAUER, S.A. HARRIS, R. POSER (1998). Biomechanical and histological evaluation of a calcium phosphate cement. J. Bone Jt. Surg. 80, 1112-1124.
5. GADDAM, V., V. PODARALA, S.K. RAYADURAM VENKATA, S.L. MUKKU, R. DEVALAM, B. KUNDU (2022). Multi‐ion‐doped nano‐hydroxyapatite‐coated titanium intramedullary pins for long bone fracture repair in dogs—Clinical evaluation. J. Biomed. Mater. Res. Part B: Appl. Biomater. 110, 806-816. https://doi: 10.1002/jbm.b.34960
6. GALOVICH, L.A., A. PEREZ-HIGUERAS, J.R. ALTONAGA, J.M. GONZALO ORDEN, M.L. MARIÑOSO BARBA, M.T. CARRASCAL MORILLO (2011). Biomechanical, histological and histomorphometric analyses of calcium phosphate cement compared to PMMA for vertebral augmentation in a validated animal model. Eur Spine J.l. 20, 376-382. https://doi.org/10.1007/s00586-011-1905-4
7. GOPINATHAN, A., K. SINGH, A. KHAN, S.D. SIDDARAJU (2021). Open and closed intramedullary pinning of tibial fractures in dogs.
8. JACKSON, N., M. ASSAD, D. VOLLMER, J. STANLEY, M. CHAGNON (2019). Histopathological evaluation of orthopedic medical devices: the state-of-the-art in animal models, imaging, and histomorphometry techniques. Toxicol. Pathol. 47, 280-296. https://doi.org/10.1177/01926233188210
9. KANCHANA, P., C. SEKAR (2012). Effect of magnesium on the mechanical and bioactive properties of biphasic calcium phosphate. J. Mine. Mater. Charact. Eng. 11, 982.
10. KAZEMI, D., K.S. ASENJAN, N. DEHDILANI, H. PARSA (2017). Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: Macroscopic and histological assessments. Bone Joint Res. 6, 98-107. https://doi.org/10.1302/2046-3758.62.BJR-2016-0188.R1
11. KUMAR, A., B. QURESHI, V. SANGWAN (2020). Biological osteosynthesis in veterinary practice: A review. Int. J. Livest. Res. 10, 24-31. doi: http://dx.doi.org/10.5455/ijlr.20200718 062546
12. KUMAR, K.M., V.D. PRASAD, N.D. LAKSHMI, N. RAJU (2018). Evaluation of biochemical parameters for assessment of fracture healing in dogs. Phar. Innova. J. 7, 577-580.
13. MA, Y.F, N. JIANG, X. ZHANG, C.H. QIN, L. WANG, Y.J. HU, B.W. WANG (2018). Calcium sulfate induced versus PMMA-induced membrane in a critical-sized femoral defect in a rat model. Sci. Rep. 8, 1-12. https://doi.org/10.1038/s41598-017-17430-x
14. MAYFIELD, C.K., M. AYAD, E. LECHTHOLZ-ZEY, Y. CHEN, J.R. LIEBERMAN (2022). 3D-Printing for Critical Sized Bone Defects: Current Concepts and Future Directions. Bioeng. 9,680.. https://doi.org/10.3390/ bioengineering9110680
15. MERTA, I., L. BERGER, G. HEIDFOGEL, K.D. KUHN, G. LEWIS, E.K. TSCHEGG (2017). Size and boundary effects on notch tensile strength and fracture properties of PMMA bone cement. Polymer Testing, 59, 441-448. https://doi.org/10.1016/j.polymertesting.2017.02.018
16. MORGAN, E.F., A. DE GIACOMO, L.C. GERSTENFELD (2014). Overview of skeletal repair (fracture healing and its assessment). Skeletal Development and Repair: Methods and Protocols, 13-31.
17. OOMS, E., J. WOLKE, M. VAN DE HEUVEL, B. JESCHKE, J. JANSEN (2003). Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials, 24: 989-1000. https://doi.org/10.1016/S0142-9612(02)00438-6
18. PAHLEVANZADEH, F., M. EBRAHIMIAN-HOSSEINABADI (2019). Poly (methyl methacrylate)/biphasic calcium phosphate/nano graphene bone cement for orthopedic application. J. Med. Signals Sens, 9, 33. https://doi.org/10.4103/jmss.JMSS_34_18
19. PURNOMO, A., S. BUDHI, D. ADJI, D. ANGGRAENI, D. ANGGORO, S. WIDYARINI, M.T.E. PURNAMA (2022). Radiographic and Histological Evaluation in Canine Femur after Implantation of 304 Stainless-steel-based Plate. Pharmacogn. J. 14. https://doi: 10.5530/pj.2022.14.112
20. REDDY, G., V.G. KUMAR, K. RAGHAVENDER, D.P. KUMAR (2020). Evaluation of haemato-biochemical parameters for assessment of fracture healing in dogs. Pharma. Innovation. J. 9, 123-125. https://doi.org/10.22271/tpi.2020.v9.i9Sc.5187
21. SAHARAN, S., R.V. MATHEW (2019). Current and future perspectives of polymethylmethacrylate bone cement in veterinary orthopaedics: A review.
22. SAKAMOTO, A., P. QI, S. OHBA, S. OHTA, Y. HARA, T. OGAWA, M. MOCHIZUKI (2019). Bone regeneration by calcium phosphate‐loaded carboxymethyl cellulose nonwoven sheets in canine femoral condyle defects. J. Biomed. Mater. Res. Part B: Appl. Biomater. 107, 1516-1521. https://doi.org/10.1002/jbm.b.34243
23. SAUNDERS, W., L. DEJARDIN, E. SOLTYS-NIEMANN, C. KAULFUS, B. EICHELBERGER, L. DOBSON, C. GREGORY (2022). Angle-stable interlocking nailing in a canine critical-sized femoral defect model for bone regeneration studies: In pursuit of the principle of the 3R’s. Front. Bioeng. Biotechnol. 10, 1432. https://doi.org/10.3389/fbioe.2022.921486
24. SHEKHO, H.A., S.A. WADI, E.R. SARHAT (2022). Histopathological evaluation of Tilduronate on healing of femoral bone in dogs. Tikrit J. Vet. Sci. 1.
25. VAISHYA, R., M. CHAUHAN, A. VAISH (2013). Bone cement. J. Clin. Orthop. Trauma. 4, 157-163. https://doi.org/10.1016/j.jcot.2013.11.005
26. WANCKET, L. (2015). Animal models for evaluation of bone implants and devices: comparative bone structure and common model uses. Vet. Pathnol. 52, 842-850. https://doi.org/10.1177/0300985815593124

Most read articles by the same author(s)