EVALUATION OF EXPRESSION OF MIR-21 AND MIR-548 IN ORAL SQUAMOUS CELL CARCINOMA (OSCC)
Main Article Content
Keywords
miR-21, miR-548, Gene expression, oral squamous cell carcinoma, biomarker, micro-RNA
Abstract
Background: microRNAs (miRNAs) are a group of short non-coding RNAs with 18-22 bp length, this category of genes plays critical roles in cellular pathways and dysregulation of their expression is related to the development and progression of different types of cancer including OSCC. This study evaluated miR-21 and miR-548 expression patterns in OSCC samples and these genes' potential as diagnostic biomarkers for oral squamous cell carcinoma (OSCC).
Method: In this cross-sectional study, tumor and marginal tissues were collected from 100 patients with OSCC. Following RNA extraction, miR-21 and miR-548 expression levels were measured using SYBR green master mix and real-time quantitative PCR.
Results: Our study revealed a notable rise in miR-21 and miR-548 expression levels in tumor tissue samples compared to marginal tissue samples. Additionally, miRNA expression was linked to specific clinicopathological features of the patients. ROC curve analysis indicates that only the expression of miR-21 can be used as a biomarker for OSCC.
Conclusions: Our data showed upregulation of miR-21 and miR-548. However, based on our findings, only miR-21 expression could serve as a promising diagnostic and prognostic biomarker in OSCC. Further research is necessary to validate this assertion.
References
2. Mehrotra R, Yadav S. Oral squamous cell carcinoma: etiology, pathogenesis and prognostic value of genomic alterations. Indian J Cancer. 2006;43(2):60–6.
3. Patel SC, Carpenter WR, Tyree S, Couch ME, Weissler M, Hackman T, Hayes DN, Shores C, Chera BS. Increasing incidence of oral tongue squamous cell carcinoma in young white women, age 18 to 44 years. J Clin Oncol. 2011;29(11):1488–94.
4. Curry JM, Sprandio J, Cognetti D, Luginbuhl A, Bar-ad V, Pribitkin E, Tuluc M. Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol. 2014;41(2):217–34.
5. Gandini S, Botteri E, Iodice S, Boniol M, Lowenfels AB, Maisonneuve P, Boyle P. Tobacco smoking and cancer: a meta-analysis. Int J Cancer. 2008;122(1):155–64.
6. Yamashita T, Kato K, Long NK, Makita H, Yonemoto K, Iida K, Tamaoki N, Hatakeyama D, Shibata T. Effects of smoking and alcohol consumption on 5-fluorouracil-related metabolic enzymes in oral squamous cell carcinoma. Molecular and clinical oncology. 2014;2(3):429–34.
7. Guo LK, Zhang CX, Guo XF. Association of genetic polymorphisms of aldehyde dehydrogenase-2 and cytochrome P450 2E1-RsaI and alcohol consumption with oral squamous cell carcinoma. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2012;34(4):390–5.
8. Bloebaum M, Poort L, Böckmann R, Kessler P. Survival after curative surgical treatment for primary oral squamous cell carcinoma. J Craniomaxillofac Surg. 2014;42(8):1572–6.
9. Asadi M, Shanehbandi D, Kermani TA, et al (2018a). Expression level of caspase genes in colorectal Cancer. Asian Pac J Cancer Prev, 19, 1277-80.
10. Asadi M, Shanehbandi D, Mohammadpour H, et al (2018b). Expression level of miR-34a in tumor tissue from patients with esophageal squamous cell carcinoma. J Gastrointest Cancer, 50, 304-7.
11. Asadi M, Shanehbandi D, Zafari V, et al (2018c). Transcript level of MicroRNA processing elements in gastric cancer. J Gastrointest Cancer, 50, 855-9
12. Alizadeh, N., Asadi, M., Shanehbandi, D. et al. Evaluation of the Methylation of MIR129-2 Gene in Gastric Cancer. J Gastrointest Canc 51, 267–270 (2020).
13. Mahnaz Mohammadi, Adel Spotin, Mahmoud Mahami-Oskouei, Dariush Shanehbandi, Ehsan Ahmadpour, Adriano Casulli, Ali Rostami, Amir Baghbanzadeh, Milad Asadi,
14. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007 Aug;133(2):647-58. doi: 10.1053/j.gastro.2007.05.022
15. Shi Y, Qiu M, Wu Y, Hai L. MiR-548-3p functions as an anti-oncogenic regulator in breast cancer. Biomed Pharmacother. 2015 Oct;75:111-6. doi: 10.1016/j.biopha.2015.07.027.
16. Liang H, Hu C, Lin X, He Z, Lin Z, Dai J. MiR-548d-3p Promotes Gastric Cancer by Targeting RSK4. Cancer Manag Res. 2020 Dec 24;12:13325-13337. doi: 10.2147/CMAR.S278691.
17. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005 Nov 27;33(20)
18. Shekari, N.Asadi, M, Akbari, M, Baradaran, B, Zarredar, H., Mohaddes-Gharamaleki, F., Shanehbandi, D. (2022). Autophagy-regulating microRNAs: two-sided coin in the therapies of breast cancer. European Review for Medical & Pharmacological Sciences, 26(4).
19. MicroRNA-365 promotes apoptosis in human melanoma cell A375 treated with hydatid cyst fluid of Echinococcus granulosus sensu stricto,Microbial Pathogenesis,Volume 153,2021,104804,
20. Mansoori, B., Mohammadi, A., Hashemzadeh, S., Shirjang, S., Baradaran, A., Asadi, M., Doustvandi, M.A., Baradaran, B., 2017. Urtica dioica extract suppresses mir-21 and metastasis-related genes in breast cancer. Biomed. Pharmacother. 93, 95–102.
21. Bica-Pop C, Cojocneanu-Petric R, Magdo L, Raduly L, Gulei D, Berindan-Neagoe I. Overview upon miR-21 in lung cancer: focus on NSCLC. Cell Mol Life Sci. 2018 Oct;75(19):3539-3551.
22. Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008 Dec;88(12):1358-66.
23. Rhim J, Baek W, Seo Y, Kim JH. From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells. 2022 Sep 7;11(18):2791.
24. Ni XF, Zhao LH, Li G, Hou M, Su M, Zou CL, Deng X. MicroRNA-548-3p and MicroRNA-576-5p enhance the migration and invasion of esophageal squamous cell carcinoma cells via NRIP1 down-regulation. Neoplasma. 2018 Nov 15;65(6):881-887.