A narrative review of the effects of sugar-sweetened beverages on human health: A key global health issue

Main Article Content

Mainul Haque https://orcid.org/0000-0002-6124-7993
Judy McKimm http://orcid.org/0000-0002-8949-5067
Massimo Sartelli https://orcid.org/0000-0003-3202-7542
Nandeeta Samad https://orcid.org/0000-0002-3623-0743
Seraj Zohurul Haque https://orcid.org/0000-0003-1148-6707
Muhamad Abu Bakar https://orcid.org/0000-0002-4057-9462

Keywords

effects, sugar-sweetened beverages, SSBs, consumption, tax, diabetes, cardiovascular diseases, weight gain and obesity, cancer, nutrition and diet quality, nutrition, mortality, morbidity, global health

Abstract

The provision of healthy and safe food is vital for human health, and the addition of unnecessary sugars in foodstuffs is an important global issue, leading to multiple long- and short-term health issues and spiraling costs for individuals and governments alike. The negative effect of excess sugar consumption contributes to adverse health conditions, including obesity, type 2 diabetes, and poor oral health in both high and low resource settings. A key plank of governmental and health promotion bodies’ nutritional guidance is to raise public awareness of “hidden” sugars, salt, and fats, such as found in processed foods and sugar-sweetened beverages (SSBs), and guide individuals to reduce their consumption. This rapid narrative review brings together some of the key issues identified in the literature around the consumption of SSBs, including patterns of consumption, the general impact on human health and nutrition, specific effects on oral health and the oral microbiome, and strategies to address over-con-sumption. The range of long-term adverse effects on health is often misunderstood or unknown by the public. However, some strategies have succeeded in reducing the consumption of SSBs, including public health strategies and interventions and the imposition of taxes or levies, and this article makes recommendations for action.

Abstract 6566 | PDF Downloads 3431 HTML Downloads 205 XML Downloads 283

References

1. World Health Organization (WHO). Health diet, 2018 [Internet]. Available at: https://www. who.int/news-room/fact-sheets/detail/healthy-diet.
2. Mozaffarian D, Ludwig DS. The 2015 US dietary guidelines: Lifting the ban on total dietary fat. JAMA 2015;313(24):2421–2. https://doi.org/10. 1001/jama.2015.5941
3. Kromhout D, Spaaij CJ, de Goede J, Weggemans RM. The 2015 Dutch food-based dietary guide-lines. Eur J Clin Nutr 2016;70(8):869–78. https:// doi.org/10.1038/ejcn.2016.52
4. Bleich SN, Vercammen KA. The negative impact of sugar-sweetened beverages on children's health: An update of the literature. BMC Obes 2018;5:6. https://doi.org/10.1186/s40608-017-0178-9
5. Luger M, Lafontan M, Bes-Rastrollo M, Winzer E, Yumuk V, Farpour-Lambert N. Sugar-sweetened beverages and weight gain in children and adults: A systematic review from 2013 to 2015 and a comparison with previous studies. Obes Facts 2017;10(6):674–93. https://doi.org/ 10.1159/000484566
6. Malik VS, Schulze MB, Hu FB. Intake of sug-ar-sweetened beverages and weight gaIn: A sys-tematic review. Am J Clin Nutr 2006;84(2):274–88. https://doi.org/10.1093/ajcn/84.2.274
7. Malik VS, Willett WC, Hu FB. Sugar-sweetened beverages and BMI in children and adolescents: Re-analyses of a meta-analysis. Am J Clin Nutr 2009;89(1):438–9. https://doi.org/10.3945/ajcn. 2008.26980
8. Zheng M, Allman-Farinelli M, Heitmann BL, Rangan A. Substitution of sugar-sweetened bev-erages with other beverage alternatives: A review of long-term health outcomes. J Acad Nutr Diet 2015;115(5):767–79. https://doi.org/10.1016/j. jand.2015.01.006
9. Hu FB, Malik VS. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol Behav 2010;100:47–54. https:// doi.org/10.1016/j.physbeh.2010.01.036
10. Malik VS, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010;33(11): 2477–83. https://doi.org/10.2337/dc10-1079
11. Bucher Della Torre S, Keller A, Laure Depeyre J, Kruseman M. Sugar-sweetened beverages and obesity risk in children and adolescents: A sys-tematic analysis on how methodological quality may influence conclusions. J Acad Nutr Diet 2016;116(4):638–59. https://doi.org/10.1016/j. jand.2015.05.020
12. Malik VS, Pan A, Willett WC, Hu FB. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analy-sis. Am J Clin Nutr 2013;98(4):1084–102. https:// doi.org/10.3945/ajcn.113.058362
13. World Health Organization. Diet, nutrition, and the prevention of chronic diseases: Report of a Joint WHO/FAO Expert Consultation. WHO Technical Report Series, No. 916 (TRS 916). Geneva: World Health Organization; 2003. Available at: https://www.who.int/dietphysicalac-tivity/publications/trs916/en/
14. World Health Organization. Information note about intake of sugars recommended in the WHO guideline for adults and children. Geneva: WHO Press, World Health Organization; 2015. Available at: https://www.who.int/nutrition/ publications/guidelines/sugar_intake_informa-tion_note_en.pdf
15. Sowa PM, Keller E, Stormon N, Lalloo R, Ford PJ. The impact of a sugar-sweetened beverages tax on oral health and costs of dental care in Australia. Eur J Public Health 2019;29(1):173–7. https://doi.org/10.1093/eurpub/cky087
16. Jevdjevic M, Trescher AL, Rovers M, Listl S. The caries-related cost and effects of a tax on sug-ar-sweetened beverages. Public Health 2019; 169:125–32. https://doi.org/10.1016/j.puhe.2019. 02.010
17. Lal A, Mantilla-Herrera AM, Veerman L, et  al. Modelled health benefits of a sug-ar-sweetened beverage tax across different socioeconomic groups in Australia: A cost-ef-fectiveness and equity analysis. PLoS Med 2017;14(6):e1002326. https://doi.org/10.1371 /journal.pmed.1002326
18. Saxena A, Koon AD, Lagrada-Rombaua L, Angeles-Agdeppa I, Johns B, Capanzana M. Modelling the impact of a tax on sweetened bev-erages in the Philippines: An extended cost-effec-tiveness analysis. Bull World Health Organ 2019;97(2):97–107. https://doi.org/10.2471/ BLT.18.219980
19. Saxena A, Stacey N, Puech PDR, Mudara C, Hofman K, Verguet S. The distributional impact of taxing sugar-sweetened beverages: Findings from an extended cost-effectiveness analysis in South Africa. BMJ Glob Health 2019;4(4):e001317. https://doi.org/10.1136/bmjgh-2018-001317
20. World Health Organization. Oral health. Key facts. 2018. Available at: https://www.who.int/ news-room/fact-sheets/detail/oral-health
21. Taylor GW, Borgnakke WS. Periodontal disease: Associations with diabetes, glycemic control, and complications. Oral Dis 2008;14(3):191–203. https://doi.org/10.1111/j.1601-0825.2008.01442.x
22. Sanz M, Ceriello A, Buysschaert M, et al. Scientific evidence on the links between periodontal diseases and diabetes: Consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology. J Clin Periodontol 2018;45(2):138–49. https://doi. org/10.1111/jcpe.12808
23. Gui ZH, Zhu YN, Cai L, et al. Sugar-sweetened beverage consumption and risks of obesity and hypertension in Chinese children and adoles-cents: A national cross-sectional analysis. Nutrients 2017;9(12):1302. https://doi.org/10. 3390/nu9121302
24. He B, Long W, Li X, Yang W, Chen Y, Zhu Y. Sugar-sweetened beverages consumption posi-tively associated with the risks of obesity and hypertriglyceridemia among children aged 7–18 years in South China. J Atheroscler Thromb 2018;25(1):81–9. https://doi.org/10.5551/jat.38570
25. Yoshida Y, Simoes EJ. Sugar-sweetened bever-age, obesity, and type 2 diabetes in children and adolescents: Policies, taxation, and programs. Curr Diab Rep 2018;18(6):31. https://doi. org/10.1007/s11892-018-1004-6
26. The Department of Health, the State of Rhode Island. Sugar-sweetened beverages. 2019. Available at: http://www.health.ri.gov/healthrisks/ sugarsweetenedbeverages/
27. Mann J. The science behind the sweetness in our diets. Bull World Health Organ 2014;92(11): 780–1. https://doi.org/10.2471/BLT.14.031114
28. Amount of sugar in different drink catego-ries. Available at: http://www.moh.gov.bn/ SiteCollectionDocuments/SSBS/Amount%20 of%20sugars%20in%20SSBS.pdf
29. Cancer Council of Australia. Position statement— Sugar-sweetened beverages. National Cancer Control Policy. Available at: https://wiki.cancer. org.au/policy/Position_statement_-_Sugar-sweetened_beverages
30. U.S. Department of Agriculture, U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2015–2020. 8th ed. Washington, DC: U.S. Government Printing Office; 2015. External. Available at: https://health.gov/dietaryguidelines/2015/ resources/2015-2020_Dietary_Guidelines.pdf
31. Vorster HH, Kruger A, Wentzel-Viljoen E, Kruger HS, Margetts BM. Added sugar intake in South Africa: Findings from the adult prospec-tive urban and rural epidemiology cohort study. Am J Clin Nutr 2014;99(6):1479–86. https://doi. org/10.3945/ajcn.113.069005
32. Nielsen SJ, Popkin BM. Changes in beverage intake between 1977 and 2001. Am J Prev Med 2004;27(3):205–10. https://doi.org/10.1016/j. amepre.2004.05.005
33. Singh GM, Micha R, Khatibzadeh S, et al. Global, regional, and national consumption of sugar-sweetened beverages, fruit juices, and milk: A systematic assessment of beverage intake in 187 countries. PLoS One 2015;10(8):e0124845. https://doi.org/10.1371/journal.pone.0124845
34. Malik VS, Popkin BM, Bray GA, Després JP, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 2010;121(11):1356–64. https://doi. org/10.1161/CIRCULATIONAHA.109.876185
35. Wang YC, Bleich SN, Gortmaker SL. Increasing caloric contribution from sugar-sweetened bev-erages and 100% fruit juices among US chil-dren  and adolescents, 1988–2004. Pediatrics 2008;121(6):e1604–14. https://doi.org/10.1542/ peds.2007-2834
36. Ng SW, Slining MM, Popkin BM. Use of caloric and noncaloric sweeteners in US consumer pack-aged foods, 2005–2009. J Acad Nutr Diet 2012;112(11):1828–34.e6. https://doi.org/10. 1016/j.jand.2012.07.009
37. Mazarello PV, Hesketh K, O'Malley C, et al. Determinants of sugar-sweetened beverage con-sumption in young children: A systematic review. Obes Rev 2015;16(11):903–13. https://doi. org/10.1111/obr.12310
38. Wattelez G, Frayon S, Cavaloc Y, Cherrier S, Lerrant Y, Galy O. sugar-sweetened beverage con-sumption and associated factors in school-going adolescents of New Caledonia. Nutrients 2019;11(2):452. https://doi.org/10.3390/nu11020452
39. van de Gaar VM, van Grieken A, Jansen W, Raat H. Children’s sugar-sweetened beverages con-sumption: Associations with family and home-re-lated factors, differences within ethnic groups explored. BMC Public Health 2017;17(1):195. https://doi.org/10.1186/s12889-017-4095-0
40. Lundeen EA, Park S, Onufrak S, Cunningham S, Blanck HM. Adolescent sugar-sweetened bever-age intake is associated with parent intake, not knowledge of health risks. Am J Health Promot 2018;32(8):1661–70. https://doi.org/10.1177/089 0117118763008
41. Park S, Blanck HM, Dooyema CA, Ayala GX. Association between sugar-sweetened beverage intake and proxies of acculturation among U.S. Hispanic and non-Hispanic white adults. Am J Health Promot 2016;30(5):357–64. https://doi. org/10.1177/0890117116646343
42. Mustapha K. Sweet kills: How overconsump-tion of sugar is making Malaysians obese, sick. New Straits Times, New Straits Times Press (M) Bhd. A part of Media Prima Group, Malaysia; 2019. Available at: https://www.nst. com.my/lifestyle/heal/2019/04/482092/ sweet-kills-how-overconsumption-sugar-mak-ing-malaysians-obese-sick
43. Health Line. 11 Graphs That Show Everything That is Wrong with The Modern Diet. Nutrition. 2019. Available at: https://www.healthline.com/ nutrition/11-graphs-that-show-what-is-wrong-with-modern-diet#section10
44. Bailey RL, Fulgoni VL, Cowan AE, Gaine PC. Sources of added sugars in young children, ado-lescents, and adults with low and high intakes of added sugars. Nutrients 2018;10(1):102. https:// doi.org/10.3390/nu10010102
45. Smith RD, Cornelsen L, Quirmbach D, Jebb SA, Marteau TM. Are sweet snacks more sensitive to price increases than sugar-sweetened beverages: Analysis of British food purchase data. BMJ Open 2018;8(5):e019788. https://doi.org/10.1136/ bmjopen-2017-019788corr1
46. American Chemical Society. Use of sugars and other carbohydrates in the food industry. A collec-tion of papers comprising the Symposium on the Use of Sugars and Other Carbohydrates in the Food Industry. Presented jointly before the Divisions of Agricultural and Food Chemistry and Carbohydrate Chemistry at the 123rd meeting of the American Chemical Society, Los Angeles, CA, March 1953. 1955. Available at: https://epdf.tips/ use-of-sugars-and-other-carbohydrates-in-the-food-industry-advances-in-chemistry.html
47. Wang J. 56 names for sugar the food industry uses to hide how much is in their products. Health & Wellness. South China Morning Post. 2016. Available at: https://www.scmp.com/ lifestyle/health-beauty/article/1937818/ 56-names-sugar-food-industry-uses-hide-how-much-their
48. Monteiro CA, Cannon G, Moubarac JC, Levy RB, Louzada MLC, Jaime PC. The UN Decade of Nutrition, the NOVA food classification, and the trouble with ultra-processing. Public Health Nutr 2018;21(1):5–17. https://doi.org/10.1017/ S1368980017000234
49. Ludwig DS. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and car-diovascular disease. JAMA 2002;287:2414–23. https://doi.org/10.1001/jama.287.18.2414
50. Csete J, Kamarulzaman A, Kazatchkine M, et al. Public health and international drug policy. Lancet 2016;387(10026):1427–80. https://doi. org/10.1016/S0140-6736(16)00619-X
51. Dictionary.com. Drug. 2019. Available at: http:// www.dictionary.com/browse/drug
52. Cori CF, Cori GT. Carbohydrate metabolism. Ann Rev Biochem 1941;10(1):151–80. https:// doi.org/10.1146/annurev.bi.10.070141.001055
53. Snow HL. Refined sugar: Its use and misuse. The Improvement Era magazine. Lee Foundation for Nutritional Research. The leader in holistic nutrition education. Selene River Press. 1948. Available at: https://www.seleneriverpress.com/ historical/refined-sugar-its-use-and-misuse/
54. DiNicolantonio JJ, Lucan SC. Sugar season. It's everywhere and addictive. The New York Times. 2014. Available at: https://www.nytimes. com/2014/12/23/opinion/sugar-season-its-ev-erywhere-and-addictive.html
55. Yoshino F, Yoshida A, Umigai N, Kubo K, Lee MC. Crocetin reduces the oxidative stress-in-duced reactive oxygen species in the stroke-prone spontaneously hypertensive rats (SHRSPs) brain. J Clin Biochem Nutr 2011;49(3):182–7. https://doi.org/10.3164/jcbn.11-01
56. Tan BL, Norhaizan ME, Liew WPP. Nutrients and oxidative stress: Friend or foe? Oxid Med Cell Longev 2018;2018:9719584. https://doi. org/10.1155/2018/9719584
57. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care 2002;5(5):561–8. https://doi.org/10.1097/0007 5197-200209000-00016
58. Prasad K, Dhar I. Oxidative stress as a mecha-nism of added sugar-induced cardiovascular dis-ease. Int J Angiol 2014;23(4):217–26. https://doi. org/10.1055/s-0034-1387169
59. Keast RS, Swinburn BA, Sayompark D, Whitelock S, Riddell LJ. Caffeine increases sug-ar-sweetened beverage consumption in a free-liv-ing population: A randomized controlled trial. Br J Nutr 2015;113(2):366–71. https://doi. org/10.1017/S000711451400378X
60. Evert AB, Dennison M, Gardner CD, et al. Nutrition therapy for adults with diabetes or pre-diabetes: A consensus report. Diabetes Care 2019;42(5):731–54. https://doi.org/10.2337/ dci19-0014
61. American Heart Associations. How much sugar is too much? Available at: https://www.heart.org/ en/healthy-living/healthy-eating/eat-smart/sugar/ how-much-sugar-is-too-much
62. Schulze MB, Manson JE, Ludwig DS, et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and mid-dle-aged women. JAMA 2004;292(8):927–34. https://doi.org/10.1001/jama.292.8.927
63. Xu F, Park S, Siegel KR. Factors associated with frequency of sugar-sweetened beverage consump-tion among US adults with diabetes or prediabe-tes. Am J Health Promot 2018;32(7):1489–97. https://doi.org/10.1177/0890117117746187
64. Wyshak G. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch Pediatr Adolesc Med 2000;154(6):610–13. https://doi. org/10.1001/archpedi.154.6.610
65. Whiting SJ, Healey A, Psiuk S, Mirwald R, Kowalski K, Bailey DA. Relationship between carbonated and other low nutrient-dense bever-ages and bone mineral content of adolescents. Nutr Res 2000;21(8):1107–15. https://doi.org/ 10.1016/S0271-5317(01)00324-4
66. Bennett LJ, Totosy de Zepetnek JO, Brett NR, et al. Effect of commercially available sug-ar-sweetened beverages on subjective appetite and short-term food intake in girls. Nutrients 2018;10(4):pii: E394. https://doi.org/10.3390/ nu10040394
67. Poirier KL, Totosy de Zepetnek JO, Bennett LJ, et al. Effect of commercially available sugar-sweet-ened beverages on subjective appetite and short-term food intake in boys. Nutrients 2019;11(2):pii: E270. https://doi.org/10.3390/nu11020270
68. Avena NM, Rada P, Thompson HR, Patel A, Madsen KA. Potentially addictive properties of sugar-sweetened beverages among adolescents’ neu-rochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 2007;32(1):20–39. https://doi.org/10.1016/j.neubiorev.2007.04.019
69. Lustig RH. Fructose: Metabolic, hedonic, and societal parallels with ethanol. J Am Diet Assoc 2010;110(9):1307–21. https://doi.org/10.1016/j. jada.2010.06.008
70. Ahmed SH, Guillem K, Vandaele Y. Sugar addiction: Pushing the drug-sugar analogy to the limit. Curr Opin Clin Nutr Metab Care 2013;16(4):434–9. https://doi.org/10.1097/MCO. 0b013e328361c8b8
71. Lenoir M, Serre F, Cantin L, Ahmed SH. Intense sweetness surpasses cocaine reward. PLoS One 2007;2(8):e698. https://doi.org/10.1371/journal. pone.0000698
72. American Psychiatric Association. What is addiction? Washington, DC; 2019. Available at: https://www.psychiatry.org/patients-families/ addiction/what-is-addiction
73. O'Brien C. Addiction and dependence in DSM-V. Addiction 2010;106(5):866–7. https://doi. org/10.1111/j.1360-0443.2010.03144.x
74. MacLaren E. Understanding tolerance, depen-dence, and addiction. An American Addiction Centers Resources; 2019. Available at: https:// drugabuse.com/addiction/
75. National Institute of Drug Abuse. The neurobiol-ogy of drug addiction. Advancing Addiction Science; 2019. Available at: https://www.drugabuse. g o v / p u b l i c a t i o n s / t e a c h i n g - p a c k e t s / neurobiology-drug-addiction/ section-iii-action-her-oin-morphine/8-definition-dependence
76. De Freitas RL, Kübler JM, Elias-Filho DH, Coimbra NC. Antinociception induced by acute oral administration of sweet substance in young and adult rodents: The role of endogenous opi-oid peptides chemical mediators and ? (1)-opi-oid receptors. Pharmacol Biochem Behav 2012;101(2):265–70. https://doi.org/10.1016/j. pbb.2011.12.005
77. Mysels DJ, Sullivan MA. The relationship between opioid and sugar intake: Review of evidence and clinical applications. J Opioid Manag 2010;6(6):445–52. https://doi.org/10. 5055/jom.2010.0043
78. Kalon E, Hong JY, Tobin C, Schulte T. Psychological and neurobiological correlates of food addiction. Int Rev Neurobiol 2016;129: 85–110. https://doi.org/10.1016/bs.irn.2016.06.003
79. O’Keefe Osborn C. How long does withdrawal from sugar last? Very well mind. 2018. Available at: https://www.verywellmind.com/sugar-withdrawal-symptoms-timeline-and-treatment-4176257
80. Falbe J, Thompson HR, Patel A, Madsen KA. Potentially addictive properties of sugar-sweet-ened beverages among adolescents. Appetite 2019;133:130–7. https://doi.org/10.1016/j.appet. 2018.10.032
81. Miller C, Wakefield M, Braunack-Mayer A, et al. Who drinks sugar-sweetened beverages and juice? An Australian population study of behavior, awareness, and attitudes. BMC Obes 2019;6:1. https://doi.org/10.1186/s40608-018-0224-2
82. Beaglehole R. Sugar-sweetened beverages, obe-sity, diabetes, and oral health: A preventable cri-sis. Pac Health Dialog 2014;20(1):39–42.
83. Bray GA, Popkin BM. Dietary sugar and body weight: Have we reached a crisis in the epidemic of obesity and diabetes? Health be damned! Pour on the sugar. Diabetes Care 2014;37(4):950–6. https://doi.org/10.2337/dc13-2085
84. Malik VS, Hu FB. Fructose and cardiometabolic health what the evidence from sugar-sweetened beverages tells us. J Am Coll Cardiol 2015;66(14): 1615–24.
85. De Koning L, Malik VS, Kellogg MD, Rimm EB, Willett WC, Hu FB. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation 2012; 125(14):1735–41. https://doi.org/10.1161/ CIRCULATIONAHA.111.067017
86. Huang C, Huang J, Tian Y, Yang X, Gu D. Sugar-sweetened beverages consumption and risk of cor-onary heart disease: A meta-analysis of prospective studies. Atherosclerosis 2014;234(1):11–16. https:// doi.org/10.1016/j.atherosclerosis.2014.01.037
87. Fung TT, Shetty S, Malik SS, Yanchou Njike V. Impact of sugar-sweetened beverages on blood pressure. A consumption and risk of coronary heart disease in women. Am J Clin Nutr 2009;89(4):1037–42. https://doi.org/10.3945/ ajcn.2008.27140
88. Grimes CA, Wright JD, Liu K, Nowson CA, Loria CM. Dietary sodium intake is associated with total fluid and sugar-sweetened beverage consumption in US children and adolescents aged 2–18 y: NHANES 2005–2008. Am J Clin Nutr 2013;98(1):189–96. https://doi.org/10.3945/ ajcn.112.051508
89. Grimes CA, Riddell LJ, Campbell KJ, Nowson CA. Dietary salt intake, sugar-sweetened bever-age consumption, and obesity risk. Pediatrics 2013;131(1):14–21. https://doi.org/10.1542/ peds.2012-1628
90. Malik AH, Akram Y, Shetty S, Malik SS, Yanchou Njike V. Impact of sugar-sweetened beverages on blood pressure. Am J Cardiol 2014;113(9):1574–80. https://doi.org/10.1016/j. amjcard.2014.01.437
91. Kim YH, Abris GP, Sung MK, Lee JE. Consumption of sugar-sweetened beverages and blood pressure in the United States: The national health and nutrition examination survey 2003– 2006. Clin Nutr Res 2012;1(1):85–93. https://doi. org/10.7762/cnr.2012.1.1.85
92. Dhingra R, Sullivan L, Jacques PF, et al. Soft drink consumption and risk of developing car-diometabolic risk factors and the metabolic syn-drome in middle-aged adults in the community. Circulation 2007;116(5):480–8. https://doi. org/10.1161/CIRCULATIONAHA.107.689935
93. Hert KA, Fisk PS 2nd, Rhee YS, Brunt AR. Decreased consumption of sugar-sweetened bev-erages improved selected biomarkers of chronic disease risk among US adults: 1999 to 2010. Nutr Res 2014;34(1):58–65. https://doi.org/10. 1016/j.nutres.2013.10.005
94. Malik VS, Li Y, Pan A, et al. Long-term consump-tion of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation 2019;139(18):2113–25. https://doi. org/10.1161/CIRCULATIONAHA.118.037401
95. Ruanpeng D, Thongprayoon C, Cheungpasitporn W, Harindhanavudhi T. Sugar, and artificially sweetened beverages linked to obesity: A systematic review and meta-analysis. QJM 2017;110(8): 513–20. https://doi.org/10.1093/qjmed/hcx068
96. Nguyen S, Choi HK, Lustig RH, Thongprayoon C, Cheungpasitporn W, Harindhanavudhi T. Sugar, and blood pressure in adolescents. J Pediatr 2009;154(6):807–13. https://doi.org/10. 1016/j.jpeds.2009.01.015
97. Bernardo WM, Simões RS, Buzzini RF, Nunes VM, Glina F. Adverse effects of the consump-tion of artificial sweeteners—Systematic review. Rev Assoc Med Bras (1992) 2016;62(2):120–2. https://doi.org/10.1590/1806-9282.62.02.120
98. Carwile JL, Willett WC, Spiegelman D, et al. Sugar-sweetened beverage consumption and age at menarche in a prospective study of US girls. Hum Reprod 2015;30(3):675–83. https://doi. org/10.1093/humrep/deu349
99. An R, Maurer G. Consumption of sugar-sweet-ened beverages and discretionary foods among US adults by purchase location. Eur J Clin Nutr 2016;70(12):1396–400. https://doi.org/10.1038/ ejcn.2016.136
100. Popkin BM, Nielsen SJ. The sweetening of the world's diet. Obes Res 2003;11(11):1325–32. https://doi.org/10.1038/oby.2003.179
101. Apovian CM. Sugar-sweetened soft drinks, obe-sity, and type 2 diabetes. JAMA 2004;292(8): 978–79. https://doi.org/10.1001/jama.292.8.978
102. Harpaz D, Yeo LP, Cecchini F, et al. Measuring artificial sweeteners toxicity using a biolumines-cent bacterial panel. Molecules 2018;23(10):2454. https://doi.org/10.3390/molecules23102454
103. Chiu YH, Afeiche MC, Gaskins AJ, et al. Sugar-sweetened beverage intake in relation to semen quality and reproductive hormone levels in young men. Hum Reprod 2014;29(7):1575–84. https://doi.org/10.1093/humrep/deu102
104. Chen L, Xie YM, Pei JH, et al. Sugar-sweetened beverage intake and serum testosterone levels in adult males 20–39 years old in the United States. Reprod Biol Endocrinol 2018;16(1):61. https:// doi.org/10.1186/s12958-018-0378-2
105. Hatch EE, Wesselink AK, Hahn KA, et al. Intake of sugar-sweetened beverages and fecund-ability in a North American preconception cohort. Epidemiology 2018;29(3):369–78. https:// doi.org/10.1097/EDE.0000000000000812
106. Katib A. Mechanisms linking obesity to male infertility. Cent European J Urol 2015;68(1): 79–85. https://doi.org/10.5173/ceju.2015.01.435
107. Vartanian L, Schwartz M, Brownell K. Effects of soft drink consumption on nutrition and health: A systematic review and meta-analysis. Am J Public Health 2007;97(4):667–75. https:// doi.org/10.2105/AJPH.2005.083782
108. Pan A, Hu FB. Effects of carbohydrates on sati-ety: Differences between liquid and solid food. Curr Opin Clin Nutr Metab Care 2011;14:385–90. https://doi.org/10.1097/MCO.0b013e328346df36
109. Mullie P, Deliens T, Clarys P. Relation between sugar-sweetened beverage consumption, nutri-tion, and lifestyle in a military population. Mil Med 2016;181(10):1335–9. https://doi.org/10. 7205/MILMED-D-15-00453
110. Rajeshwari R, Yang SJ, Nicklas TA, Berenson GS. Secular trends in children sweetened-bever-age consumption (1973 to 1994): The Bogalusa Heart Study. J Am Diet Assoc 2005;105:208–14. https://doi.org/10.1016/j.jada.2004.11.026
111. Harnack L, Stang J, Story M. Soft drink con-sumption among US children and adolescents: Nutritional consequences. J Am Diet Assoc 1999;99:436–41. https://doi.org/10.1016/S0002-8223(99)00106-6
112. Newby PK, Peterson KE, Berkey CS, Leppert J, Willett WC, Colditz GA. Beverage consumption is not associated with changes in weight and body mass index among low-income preschool children in North Dakota. J Am Diet Assoc 2004;104:1086–94. https://doi.org/10.1016/j. jada.2004.04.020
113. Rodriguez-Artalejo F, Garcia EL, Gorgojo L, et  al. Consumption of bakery products, sweet-ened soft drinks, and yogurt among children aged 6–7 years: Association with nutrient intake and overall diet quality. Br J Nutr 2003;89:419– 29. https://doi.org/10.1016/j.jada.2004.04.020
114. Guenther PM. Beverages in the diets of American teenagers. J Am Diet Assoc 1986;86:493–9.
115. Bowman SA. Beverage choices of young females: Changes and impact on nutrient intakes. J Am Diet Assoc 2002;102:1234–9. https://doi.org/10. 1016/S0002-8223(02)90273-7
116. McGartland C, Robson PJ, Murray L, et al. Carbonated soft drink consumption and bone mineral density in adolescence: The Northern Ireland Young Hearts project. J Bone Miner Res 2003;18:1563–9. https://doi.org/10.1359/jbmr. 2003.18.9.1563
117. Bes-Rastrollo M, Sanchez-Villegas A, Gomez-Gracia E, Martinez JA, Pajares RM, Martinez-Gonzalez MA. Predictors of weight gain in a  Mediterranean cohort: The Seguimiento Universidad de Navarra Study 1. Am J Clin Nutr 2006;83:362–70. https://doi.org/10.1093/ ajcn/83.2.362
118. Storey ML, Forshee RA, Anderson PA. Associations of adequate intake of calcium with diet, beverage consumption, and demographic characteristics among children and adolescents. J Am Coll Nutr 2004;23:18–33. https://doi.org/1 0.1080/07315724.2004.10719339
119. Frary CD, Johnson RK, Wang MQ. Children and adolescents’ choices of foods and beverages high in added sugars are associated with intakes of key nutrients and food groups. J Adolesc Health 2004;34:56–63. https://doi.org/10.1016/ S1054-139X(03)00248-9
120. Ballew C, Kuester S, Gillespie C. Beverage choices affect adequacy of children’s nutrient intakes. Arch Pediatr Adolesc Med 2000;154:1148–52. https://doi.org/10.1001/archpedi.154.11.1148
121. Skinner JD, Carruth BR, Moran J III, Houck K, Coletta F. Fruit juice intake is not related to chil-dren’s growth. Pediatrics 1999;103:58–64. https:// doi.org/10.1542/peds.103.1.58
122. Fisher JO, Mitchell DC, Smiciklas-Wright H, Birch LL. Maternal milk consumption predicts the tradeoff between milk and soft drinks in young girls’ diets. J Nutr 2000;131:246–50. https://doi.org/10.1093/jn/131.2.246
123. Kim SH, Morton DJ, Barrett-Connor EL. Carbonated beverage consumption and bone mineral density among older women: The Rancho Bernardo Study. Am J Public Health 1997;87:276–9. https://doi.org/10.2105/AJPH. 87.2.276
124. Ma D, Jones G. Soft drink and milk consumption, physical activity, bone mass, and upper limb frac-tures in children: A population-based case-control study. Calcif Tissue Int 2004;75(4):286–91. https:// doi.org/10.1007/s00223-004-0274-y
125. Barr SI. Associations of social and demo-graphic variables with calcium intakes of high school students. J Am Diet Assoc 1994;94 (3):260–6, 269. https://doi.org/10.1016/0002-8223(94)90366-2
126. Guthrie JF. Dietary patterns and personal char-acteristics of women consuming recommended amounts of calcium. Fam Econ Nutr Rev 1996;9(3):33–49.
127. Skinner JD, Bounds W, Carruth BR, Ziegler P. Longitudinal calcium intake is negatively related to children’s body fat indexes. J Am Diet Assoc 2003;103(12):1626–31. https://doi.org/10.1016/j. jada.2003.09.018
128. Hu FB. Resolved: There is sufficient scientific evidence that decreasing sugar-sweetened bever-age consumption will reduce the prevalence of obesity and obesity-related diseases. Obes Rev 2013;14(8):606–19. https://doi.org/10.1111/obr. 12040
129. Rippe JM, Angelopoulos TJ. Relationship between added sugars consumption and chronic disease risk factors: Current understanding. Nutrients 2016;8(11):697. https://doi.org/10. 3390/nu8110697
130. Davy BM, Harrell K, Stewart J, King DS. Bodyweight status, dietary habits, and physical activity levels of middle school-aged children in rural Mississippi. South Med J 2004;97: 571–7. https://doi.org/10.1097/00007611-20040 6000-00012
131. De Castro JM. The effects of the spontaneous ingestion of particular foods or beverages on the meal pattern and overall nutrient intake of humans. Physiol Behav 1993;53:1133–44. https:// doi.org/10.1016/0031-9384(93)90370-U
132. DiMeglio DP, Mattes RD. Liquid versus solid  carbohydrate: Effects on food intake and  body weight. Int J Obes Relat Metab Disord 2000;24:794–800. https://doi.org/10.1038/ sj.ijo.0801229
133. Raben A, Vasilaras TH, Moller AC, Astrup A. Sucrose compared with artificial sweeteners: Different effects on ad libitum food intake and body weight after 10 weeks of supplementation in overweight subjects. Am J Clin Nutr 2002;76: 721–9. https://doi.org/10.1093/ajcn/76.4.721
134. Almiron-Roig E, Drewnowski A. Hunger, thirst, and energy intakes following consumption of caloric beverages. Physiol Behav 2003;79:767–73. https://doi.org/10.1016/S0031-9384(03)00212-9
135. Melanson KJ, Westerterp-Plantenga MS, Campfield LA, Saris WH. Blood glucose and meal patterns in time-blinded males, after aspartame, carbohydrate, and fat consumption, in relation to sweetness perception. Br J Nutr 1999;82:437–46. https://doi.org/10.1017/S0007114599001695
136. Lavin JH, French SJ, Read NW. The effect of sucrose- and aspartame-sweetened drinks on energy intake, hunger, and food choice of female, moderately restrained eaters. Int J Obes Relat Metab Disord 1997;21:37–42. https://doi. org/10.1038/sj.ijo.0800360
137. Deshpande G, Mapanga RF, Essop MF. Frequent sugar-sweetened beverage consump-tion and the onset of cardiometabolic diseases: Cause for concern? J Endocr Soc 2017;1(11): 1372–85. https://doi.org/10.1210/js.2017-00262
138. Mirmiran P, Yuzbashian E, Asghari G, Hosseinpour-Niazi S, Azizi F. Consumption of sugar-sweetened beverage is associated with inci-dence of metabolic syndrome in Tehranian children and adolescents. Nutr Metab (Lond). 2015;12:25. https://doi.org/10.1186/s12986-015-0021-6
139. DiNicolantonio JJ, Berger A. Added sugars drive nutrient and energy deficit in obesity: A new paradigm. Open Heart 2016;3(2):e000469. https://doi.org/10.1136/openhrt-2016-000469
140. Shimony MK, Schliep KC, Schisterman EF, et al. The relationship between sugar-sweetened beverages and liver enzymes among healthy pre-menopausal women: A prospective cohort study. Eur J Nutr 2016;55(2):569–76. https://doi. org/10.1007/s00394-015-0876-3
141. Smith A. An inquiry into the nature and causes of the wealth of nations. London: W. Strahan and T. Cadell; 1776.
142. Te Morenga L, Mallard S, Mann J. Dietary sug-ars and body weight: Systematic review and metaanalyses of randomized controlled trials and cohort studies. BMJ 2012;346:e7492. https:// doi.org/10.1136/bmj.e7492
143. Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M. Effects of caffeine on human health. Food Addit Contam 2003;20(1): 1–30. https://doi.org/10.1080/0265203021000007840
144. Prather AA, Leung CW, Adler NE, Ritchie L, Laraia B, Epel ES. Short and sweet: Associations between self-reported sleep duration and sug-ar-sweetened beverage consumption among adults in the United States. Sleep Health 2016;2(4):272–6. https://doi.org/10.1016/j.sleh. 2016.09.007
145. Petersen PE. WHO Oral Health Program. The world oral health report 2003: Continuous improvement of oral health in the 21st century— The approach of the WHO Global Oral Health Programme/Poul Erik Petersen. World Health Organization; 2003. Available at: https://apps. who.int/iris/bitstream/handle/10665/68506/ WHO_NMH_NPH_ORH_03.2.pdf?sequence= 1&isAllowed=y
146. Williams DM. The research agenda on oral health inequalities: The IADR-GOHIRA initia-tive. Med Princ Pract 2014;23(Suppl 1):52–9. https://doi.org/10.1159/000356934
147. Williams DM. Global oral health inequalities: The research agenda. Adv Dent Res 2011;23(2):198–200. https://doi.org/10.1177/ 0022034511402014
148. Petersen PE. Global policy for improvement of oral health in the 21st century—Implications to oral health research of World Health Assembly 2007, World Health Organization. Community Dent Oral Epidemiol 2009;37(1):1–8. https://doi. org/10.1111/j.1600-0528.2008.00448.x
149. Pitts N, Amaechi B, Niederman R, Acevedo AM, Vianna R, Ganss C, et al. Global oral health inequalities: Dental caries task group—Research agenda. Adv Dent Res 2011;23(2):211–20. https:// doi.org/10.1177/0022034511402016
150. National Institute of Dental and Craniofacial Research. National Institute of Dental and Craniofacial Research 2000. Oral health in America: A report of the Surgeon General. 2000. Available at: http://www.nidcr.nih.gov/ DataStatistics/SurgeonGeneral/sgr/
151. Petersen PE. World Health Organization global policy for improvement of oral health— World Health Assembly 2007. Int Dent J 2008;58(3):115–21. https://doi.org/10.1111/ j.1875-595X.2008.tb00185.x
152. Petersen PE, Yamamoto T. Improving the oral health of older people: The approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol 2005;33(2):81–92. https://doi. org/10.1111/j.1600-0528.2004.00219.x
153. Matear DW. Demonstrating the need for oral health education in geriatric institutions. Probe 1999;33(2):66–71.
154. Sanford A. The tragedy of “Mountain Dew mouth” and the U.S.’s insane approach to dental care. Lack of dental care is causing a mouthful of trouble—And it will get worse. 2017. Available at: h t t p s : / / w w w. s a l o n . c o m / 2 0 1 7 / 0 6 / 2 0 / the-tragedy-of-mountain-dew-mouth-and-the-u-s-s-insane-approach-to-dental-care_partner/
155. Song IS, Han K, Ko Y, Park YG, Ryu JJ, Park JB. Associations between the consumption of carbonated beverages and periodontal disease. The 2008–2010 Korea national health and nutri-tion examination survey. Medicine (Baltimore). 2016;95(28):e4253. https://doi.org/10.1097/ MD.0000000000004253
156. Lll KG, Klimczak A, Rachubi?ski P, Jag?owska A, Kwapiszewska A. Consumption of sweetened beverages as a risk factor of colonization of oral cavity by fungi—Eating habits of university stu-dent. Ann Parasitol 2015;61(3):175–82. https:// doi.org/10.17420/ap6103.04
157. Vikingur L. Effects of sugar-sweetened bever-ages on oral health. 2015. Available at: https:// l i f e c a r e d e n t a l . c o m . a u / d e n t a l - a d v i c e / effects-of-sugar-sweetened-beverages-on-oral-health
158. Diabetes Queensland. Diet and new generation soft drinks linked with poor oral health. Brisbane; 2017. Available at: https://www.diabe-tesqld.org.au/media-centre/2017/november/oral-health-impact-of-sugar-sweetened-beverag-es-overlooked.aspxoral-health-impact-of-sugar-sweetened-beverages-overlooked.aspx
159. Hardy LL, Bell J, Bauman A, Mihrshahi S. Association between adolescents’ consumption of total and different types of sugar-sweetened beverages with oral health impacts and weight status. Aust N Z J Public Health 2018;42(1): 22–6. https://doi.org/10.1111/1753-6405.12749
160. Jain P, Nihill P, Sobkowski J, Agustin MZ. Commercial soft drinks: pH and in vitro dissolu-tion of enamel. Gen Dent 2007;55(2):150–5.
161. Idris AM, Vani NV, Almutari DA, Jafar MA, Boreak N. Analysis of sugars and pH in commer-cially available soft drinks in Saudi Arabia with a brief review on their dental implications. J Int Soc Prev Community Dent 2016;6(Suppl 3):S192–6. https://doi.org/10.4103/2231-0762.197190
162. Reddy A, Norris DF, Momeni SS, Waldo B, Ruby JD. The pH of beverages in the United States. J Am Dent Assoc 2016;147(4):255–63. https://doi.org/10.1016/j.adaj.2015.10.019
163. Mishra MB, Mishra S. Sugar-sweetened beverages: General and oral health hazards in children and adolescents. Int J Clin Ped Dent 2011;4(2):119–23. https://doi.org/10.5005/jp-journals-10005-1094
164. Hans R, Thomas S, Garla B, Dagli RJ, Hans MK. Effect of various sugary beverages on salivary pH, flow rate, and oral clearance rate amongst adults. Scientifica (Cairo) 2016;2016:5027283. https://doi. org/10.1155/2016/5027283
165. Zero DT. Sugars—The arch-criminal? Caries Res 2004;38(3):277–85. https://doi.org/10.1159/000 077767
166. Gupta P, Gupta N, Pawar AP, Birajdar SS, Natt AS, Singh HP. Role of sugar and sugar substitutes in dental caries: A review. ISRN Dent 2013; 2013:519421. https://doi.org/10.1155/2013/519421

167. Chen F, Wang D. Novel technologies for the pre-vention and treatment of dental caries: A patent survey. Expert Opin Ther Pat 2010;20(5):681–94. https://doi.org/10.1517/13543771003720491
168. Georgios A, Vassiliki T, Sotirios K. Acidogenicity and acidurance of dental plaque and saliva sedi-ment from adults in relation to caries activity and chlorhexidine exposure. J Oral Microbiol 2015;7:26197. https://doi.org/10.3402/jom.v7.26197
169. Forssten SD, Björklund M, Ouwehand AC. Streptococcus mutans, caries, and simulation models. Nutrients 2010;2(3):290–8. https://doi. org/10.3390/nu2030290
170. Lemos JA, Quivey RG Jr, Koo H, Abranches J. Streptococcus mutans: A new Gram-positive paradigm? Microbiology 2013;159(Pt 3):436–45. https://doi.org/10.1099/mic.0.066134-0
171. Tehrani MH, Asghari G, Hajiahmadi M. Comparing Streptococcus mutans and Lactobacillus colony count changes following green tea mouth rinse or sodium fluoride mouth rinse use in children (Randomized, double-blind controlled clinical trial). Dent Res J (Isfahan) 2011;8(Suppl 1):S58–63.
172. Ahmed A, Dachang W, Lei Z, Jianjun L, Juanjuan Q, Yi X. Effect of Lactobacillus spe-cies on Streptococcus mutans biofilm formation. Pak J Pharm Sci 2014;27(5 Spec No):1523–8.
173. Beighton D, Hellyer PH, Lynch EJ, Heath MR. Salivary levels of mutans streptococci, lactoba-cilli, yeasts, and root caries prevalence in non-in-stitutionalized elderly dental patients. Community Dent Oral Epidemiol 1991;19:302–7. https://doi. org/10.1111/j.1600-0528.1991.tb00172.x
174. Drewnowski A, Rehm CD. Consumption of added sugars among us children and adults by food purchase location and food source. Am J Clin Nutr 2014;100:901–7. https://doi.org/10. 3945/ajcn.114.089458
175. U.S. Department of Health and Human Services and U.S. Department of Agriculture. Dietary guidelines for Americans 2015–2020. Eight Edition. New York: Skyhorse Publishing Inc.; 2015.
176. Ervin R, Kit B, Carroll M, Ogden C. Consumption of added sugar among U.S. chil-dren and adolescents, 2005–2008. NCHS Data Brief 2012;87:1–8.
177. Ervin RB, Ogden CL. Consumption of added sugars among U.S. adults, 2005–2010. NCHS Data Brief 2013;122:1–8.
178. Rosinger A, Herrick K, Gahche J, Park S. Sugar-sweetened beverage consumption among U.S. Adults, 2011–2014. NCHS Data Brief 2017;270:1–8.
179. Gishti O, Gaillard R, Durmus B, et al. BMI, total and abdominal fat distribution, and cardiovascular risk factors in school-age children. Pediatr Res 2015;77:710–18. https://doi.org/10.1038/pr.2015.29
180. Kumar S, Kelly AS. Review of childhood obe-sity: From epidemiology, etiology, and comor-bidities to clinical assessment and treatment. Mayo Clin Proc 2017;92:251–65. https://doi. org/10.1016/j.mayocp.2016.09.017
181. Zuba A, Warschburger P. The role of weight teasing and weight bias internalization in psy-chological functioning: A prospective study among school-aged children. Eur. Child Adolesc Psychiatry 2017;26:1245–55. https://doi.org/10. 1007/s00787-017-0982-2
182. Armfield JM, Spencer AJ, Roberts-Thomson KF, Plastow K. Water fluoridation and the asso-ciation of sugar-sweetened beverage consump-tion and dental caries in Australian children. Am J Public Health 2013;103:494–500. https://doi. org/10.2105/AJPH.2012.300889
183. Wilder J, Kaste L, Handler A, Chapple-McGruder T, Rankin K. The association between sugar-sweetened beverages and dental caries among third-grade students in Georgia. J Public Health Dent 2016;76:76–84. https://doi. org/10.1111/jphd.12116
184. Keller K, Kirzner J, Pietrobelli A, St-Onge M, Faith M. Increased sweetened beverage intake is associated with reduced milk and calcium intake in 3- to 7-year-old children at multi-item labora-tory lunches. J Am Diet Assoc 2009;109: 497–501. https://doi.org/10.1016/j.jada.2008.11.030
185. Leung C, DiMatteo S, Gosliner W, Ritchie L. Sugar-sweetened beverage and water intake in relation to diet quality in U.S. Children. Am J Prev Med 2018;54:394–402. https://doi.org/10. 1016/j.amepre.2017.11.005
186. Keast D, Fulgoni V, Nicklas T, O’Neil C. Food sources of energy and nutrients among children in the United States: National health and nutrition examination survey 2003–2006. Nutrients 2013;5:283–301. https://doi.org/10.3390/nu5010283
187. American Academy of Pediatric Dentistry. Policy on dietary recommendations for infants, children, and adolescents. Policy Man 2012;37:2015–2016.
188. Handel M, Heitmann B, Abrahamsen B. Nutrient, and food intakes in early life and risk of childhood fractures: A systematic review and meta-analysis. Am J Clin Nutr 2015;102: 1182–95. https://doi.org/10.3945/ajcn.115.108456
189. Eck KM, Dinesen A, Garcia E, et al. “Your Body Feels Better When You Drink Water”: Parent and school-age children's sugar-sweetened beverage cognitions. Nutrients 2018;10(9):pii: E1232. https:// doi.org/10.3390/nu10091232
190. Wilder JR, Kaste LM, Handler A, Chapple-McGruder T, Rankin K. The association between sugar-sweetened beverages and dental caries among third-grade students in Georgia. J Public Health Dent 2016;76(1):76–84. https://doi. org/10.1111/jphd.12116
191. Bernabé E, Vehkalahti MM, Sheiham A, Aromaa A, Suominen AL. Sugar-sweetened beverages and dental caries in adults: A 4-year prospective study. J Dent 2014;42(8):952–8. https://doi. org/10.1016/j.jdent.2014.04.011
192. Dye BA, Tan S, Smith V, et al. Trends in oral health status: United States, 1988–1994, and 1999–2004. Vital Health Stat 2007;248:1–92.
193. Lewis C, Stout J. Toothache in U.S. children. Arch Pediatr Adolesc Med 2010;164:1059–63. https://doi.org/10.1001/archpediatrics.2010.206
194. Vargas CM, Monajemy N, Khurana P, Tinanoff N. Oral health status of preschool children attending Head Start in Maryland, 2000. Pediatr Dent 2002;24:257–63.
195. Mayo Clinic Staff. Oral health: A window to your overall health. Healthy Lifestyle, Adult health; 2018. Available at: https://www.mayoc-linic.org/healthy-lifestyle/adult-health/in-depth/ dental/art-20047475
196. Davis CP. Chapter 6: Normal flora. In: Baron S, editor. Medical microbiology. 4th ed. Galveston, TX: University of Texas Medical Branch at Galveston; 1996. Available at: https://www.ncbi. nlm.nih.gov/books/NBK7617/
197. Avila M, Ojcius DM, Yilmaz O. The oral micro-biota: Living with a permanent guest. DNA Cell Biol 2009;28(8):405–11. https://doi.org/10.1089/ dna.2009.0874
198. Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell 2018;9(5):488–500. https://doi.org/10.1007/ s13238-018-0548-1
199. Zhang Y, Wang X, Li H, Ni C, Du Z, Yan F. Human oral microbiota and its modulation for oral health.  Biomed Pharmacother 2018;99:883–93. https://doi.org/10.1016/j.biopha.2018.01.146
200. Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome. J Bacteriol 2010;192(19): 5002–17. https://doi.org/10.1128/JB.00542-10
201. Carlsson J, Johansson T. Sugar, and the produc-tion of bacteria in the human mouth. Caries Res 1973;7(4):273–82. https://doi.org/10.1159/00025 9851
202. Rouabhia M. Interactions between host and oral commensal microorganisms are key events in health and disease status. Can J Infect Dis 2002;13(1):47–51. https://doi.org/10.1155/2002/ 580476
203. Lederberg J. “Ome sweet” omics—A genealogical treasury of words. The Scientist. 2001. Available at: https://www.the-scientist.com/commentary/ ome-sweet-omics---a-genealogical-treasury-of-words-54889
204. Haque SZ, Haque M. The ecological community of commensal, symbiotic, and pathogenic gas-trointestinal microorganisms—An appraisal. Clin Exp Gastroenterol 2017;10:91–103. https:// doi.org/10.2147/CEG.S126243
205. Liang D, Leung RK, Guan W, Au WW. Involvement of gut microbiome in human health and disease: Brief overview, knowledge gaps, and research opportunities. Gut Pathog 2018;10:3. https://doi.org/10.1186/s13099-018-0230-4
206. Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health and disease. Engineering 2017;3(1):71–82. https://doi.org/10.1016/J. ENG.2017.01.008
207. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014;157(1): 121–41. https://doi.org/10.1016/j.cell.2014.03.011
208. Arnolds KL, Lozupone CA. Striking a balance with help from our little friends—How the gut microbiota contributes to immune homeostasis. Yale J Biol Med 2016;89(3):389–95.
209. Hand TW. The role of the microbiota in shaping infectious immunity. Trends Immunol 2016; 37(10):647–58. https://doi.org/10.1016/j.it.2016. 08.007
210. Ubeda C, Djukovic A, Isaac S. Roles of the intes-tinal microbiota in pathogen protection. Clin Transl Immunology 2017;6(2):e128. https://doi. org/10.1038/cti.2017.2
211. Keller MK, Kressirer CA, Belstrøm D, Twetman S, Tanner ACR. Oral microbial profiles of indi-viduals with different levels of sugar intake. J Oral Microbiol 2017;9(1):1355207. https://doi. org/10.1080/20002297.2017.1355207
212. Expanded Human Oral Microbiome Database (eHOMD). 2018. Available at: http://www.homd. org/
213. Morhart RE, Fitzgerald RJ. Nutritional deter-minants of the ecology of the oral flora. Dent Clin North Am 1976;20(3):473–89.
214. Touger-Decker R, van Loveren C. Sugars and dental caries. Am J Clin Nutr 2003;78(4):881S– 92S. https://doi.org/10.1093/ajcn/78.4.881S
215. Slavin J, Carlson J. Carbohydrates. Adv Nutr 2014;5(6):760–1. https://doi.org/10.3945/an.114. 006163
216. Wade WG. The oral microbiome in health and disease. Pharmacol Res 2013;69(1):137–43. https://doi.org/10.1016/j.phrs.2012.11.006
217. Hojo K, Nagaoka S, Ohshima T, Maeda N. Bacterial interactions in dental biofilm develop-ment. J Dent Res 2009;88(11):982–90. https:// doi.org/10.1177/0022034509346811
218. Aas JA, Griffen AL, Dardis SR, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 2008;46(4):1407–17. https://doi.org/10.1128/ JCM.01410-07
219. Takahashi N, Nyvad B. The role of bacteria in the caries process: Ecological perspectives. J Dent Res 2011;90(3):294–303. https://doi. org/10.1177/0022034510379602
220. Banas JA, Drake DR. Are the mutans strepto-cocci still considered relevant to understanding the microbial etiology of dental caries? BMC Oral Health 2018;18(1):129. https://doi.org/10. 1186/s12903-018-0595-2
221. Hughes CV, Dahlan M, Papadopolou E, et al. Aciduric microbiota and mutans streptococci in severe and recurrent severe early childhood car-ies. Pediatr Dent 2012;34(2):e16–23.
222. Tanzer JM, Livingston J, Thompson AM. The microbiology of primary dental caries in humans. J Dent Educ 2001;65:102837.
223. Welsh JA, Lundeen EA, Stein AD. The sug-ar-sweetened beverage wars: Public health and the role of the beverage industry. Curr Opin Endocrinol Diabetes Obes 2013;20(5):401–6. https://doi.org/10.1097/01.med.000043 2610. 96107.f5
224. Sanghavi A, Siddiqui NJ. Advancing oral health policy and advocacy to prevent childhood obe-sity and reduce children's consumption of sug-ar-sweetened beverages. J Public Health Dent 2017;77(Suppl 1):S88–95. https://doi.org/10. 1111/jphd.12235
225. Tamir O, Cohen-Yogev T, Furman-Assaf S, Endevelt R. Taxation of sugar-sweetened bever-ages and unhealthy foods: A qualitative study of key opinion leaders' views. Isr J Health Policy Res 2018;7(1):43. https://doi.org/10.1186/ s13584-018-0240-1
226. Maniadakis N, Kapaki V, Damianidi L, Kourlaba G. A systematic review of the effective-ness of taxes on nonalcoholic beverages and high-in-fat foods as a means to prevent obesity trends. Clinicoecon Outcomes Res 2013;5: 519–43. https://doi.org/10.2147/CEOR.S49659
227. Waterlander WE, Ni Mhurchu C, Steenhuis IH. Effects of a price increase on purchases of sug-ar-sweetened beverages. Results from a random-ized controlled trial. Appetite 2014;78:32–9. https://doi.org/10.1016/j.appet.2014.03.012
228. Bascuñán J, Cuadrado C. Effectiveness of sugar-sweetened beverages taxes to reduce obesity: Evidence brief for policy. Medwave 2017;17(8):e7054. https://doi.org/10.5867/medwave.2017.08.7054
229. Wright A, Smith KE, Hellowell M. Policy lessons from health taxes: A systematic review of empiri-cal studies. BMC Public Health 2017;17(1):583. https://doi.org/10.1186/s12889-017-4497-z
230. International Development Research Center. Evaluation of South Africa’s excise tax on sug-ar-sweetened beverages. Available at: https:// www.idrc.ca/en/project/evaluation-south-africas-excise-tax-sugar-sweetened-beverages
231. Redondo M, Hernández-Aguado I, Lumbreras B. The impact of the tax on sweetened beverages: A systematic review. Am J Clin Nutr 2018;108(3): 548–63. https://doi.org/10.1093/ajcn/nqy135
232. Backholer K, Sarink D, Beauchamp A, et al. The impact of a tax on sugar-sweetened beverages according to socioeconomic position: A system-atic review of the evidence. Public Health Nutr 2016;19(17):3070–84. https://doi.org/10.1017/ S136898001600104X
233. Silver LD, Ng SW, Ryan-Ibarra S, et al. Changes in prices, sales, consumer spending, and beverage con-sumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: A before-and-after study. PLoS Med 2017;14(4):e1002283. https://doi.org/10.1371/journal.pmed.1002283
234. Lee MM, Falbe J, Schillinger D, Basu S, McCulloch CE, Madsen KA. Sugar-sweetened beverage consumption 3 years after the Berkeley, California, Sugar-Sweetened Beverage Tax. Am J Public Health 2019;109(4):637–9. https://doi. org/10.2105/AJPH.2019.304971
235. Colchero MA, Popkin BM, Rivera JA, Ng SW. Beverage purchases from stores in Mexico under the excise tax on sugar-sweetened beverages: Observational study. BMJ 2016;352:h6704. https://doi.org/10.1136/bmj.h6704
236. Colchero MA, Rivera-Dommarco J, Popkin BM, Ng SW. In Mexico, evidence of sustained consumer response two years after implementing a sugar-sweetened beverage tax. Health Aff (Millwood) 2017;36(3):564–71. https://doi. org/10.1377/hlthaff.2016.1231
237. Lloyd-Williams F, Bromley H, Orton L, et al. Smorgasbord or symphony? Assessing public health nutrition policies across 30 European countries using a novel framework. BMC Public Health 2014;14:1195. https://doi.org/10.1186/ 1471-2458-14-1195
238. Thow AM, Downs SM, Mayes C, Trevena H, Waqanivalu T, Cawley J. Fiscal policy to improve diets and prevent noncommunicable diseases: From recommendations to action. Bull World Health Organ 2018;96(3):201–10. https://doi. org/10.2471/BLT.17.195982
239. Thow AM, Quested C, Juventin L, Kun R, Khan AN, Swinburn B. Taxing soft drinks in the Pacific: Implementation lessons for improving health. Health Promot Int 2011;26(1):55–64. https://doi.org/10.1093/heapro/daq057
240. Arthur R. South Africa introduces sugar tax. Beverage Daily.Com, William Reed Business Media Ltd.; 2018. Available at: https://www.bev-e r a g e d a i l y. c o m / A r t i c l e / 2 0 1 8 / 0 4 / 0 3 / South-Africa-introduces-sugar-tax
241. World Health Organization. WHO supports pro-posed sugar-sweetened beverages tax in South Africa. WHO; 2017. Available at: https://www. afro.who.int/news/who-supports-proposed-sugar-sweetened-beverages-tax-south-africa
242. The Government of the UK. Soft Drinks Industry Levy comes into effect. 2018. Available at: https://www.gov.uk/government/news/soft-drinks-industry-levy-comes-into-effect
243. World Health Organization. Monitoring food and beverage marketing to children via television and the Internet. A proposed tool for the WHO European Region. Copenhagen: WHO Regional Office for Europe; 2016. Available at: http://www. euro.who.int/data/assets/pdf_file/0011/333956/ food-children-TV-internet-en.pdf?ua=1
244. Hawkes C, Smith TG, Jewell J, et al. Smart food policies for obesity prevention. Lancet 2015;385(9985):2410–21. https://doi.org/10.1016/ S0140-6736(14)61745-1