THE DIDACTIC UNIT TO PROMOTE THE DEVELOPMENT OF METRIC SPATIAL THINKING IN SIXTH-GRADE STUDENTS

Main Article Content

Roberto Carlos Torres Peña
Jhon Jairo Feria Diaz
Boris A. Medina Salgado

Keywords

Problem solving, Spatiometric thinking, Mathematics, Intervention.

Abstract

Currently, mathematics education faces several challenges, among which low performance in spatial metric thinking stands out. This problem is reflected in students’ difficulty in understanding and applying concepts related to space and measurement, which is essential in multiple disciplines and everyday situations. To address this deficiency, a pedagogical practice has been implemented with the objective of “Developing a didactic unit based on problem posing and solving to promote spatial metric thinking.” This initiative is based on theories and research that supports a methodology centered on action research, proposing a problem-oriented learning approach. The designed didactic unit includes progressive activities that are presented virtually through remote learning guides. At the conclusion of the unit, an exit test was administered to evaluate students’ progress. In addition, a satisfaction survey was conducted to measure students' perception of the methodology employed. The results show that the implemented methodology has generated satisfactory progress in the development of students' spatial metric thinking, demonstrating the effectiveness of teaching based on problem-solving and active learning.

Abstract 64 | PDF Downloads 39

References

1. Araya, N. (2014). Las habilidades del pensamiento y el aprendizaje significativo en matemática, de escolares de quinto grado en Costa Rica. Revista electronica "Actualidades investigativas en educación", 4.
2. Castillo-Mateo, J., Segovia, I., & Molina, M. (2017). Estudio comparativo de la estimación de cantidades continuas que hacen los estudiantes de secundaria y futuros maestros. España: I.E.S Algazul.
3. Elliott, J. (2003). La Investigación - Acción en Educaión. Madrid: Moratta.
4. Estrada, G. J. (2019). Estrategia metodológica que contribuya a la enseñanza del pensamiento espacial mediante la resolución y el planteamiento de problemas. Medellin : Universidad Nacional de Colombia.
5. Godino, J. D., & Ruíz, F. (2002). GEOMETRÍA Y SU DIDÁCTICA PARA MAESTROS. Granada: ReproDigital.
6. Latorre, A. (2005). La Investigación - Acción . Barcelona: Graó, de IRIF, S. L.
7. MEN. (1998). Lineamientos Curriculares. Bogota: Ministerio de Educación Nacional.
8. Montaño, R. T. (2018). Diseño de actividades en el aula de clase, para los estudiantes de básica secundaria de la Institucion Educativa Colegio Santa Bárbara, con herramientas tic, para el desarrollo del pensamiento espacial, métrico y sistemas de medida. Ocaña: Universidad Francisco de Paula Santander.
9. Murillo, J. (2003). El movimiento teórico-práctico de mejora de la escuela. Algunas lecciones aprendidas para transformar los centros docentes. REICE Revisata electrónica iberoamericana sobre calidad, eficacia y cambio en la educación, 2.
10. Pólya, G. (1989). Como Plantear y Resolver Problemas . Mexico D. F.: Trillas.
11. Boaler, J. (2016). Mathematical mindsets: Unleashing students' potential through creative math, inspiring messages and innovative teaching. Jossey-Bass.
12. Clements, D. H., & Sarama, J. (2011). Early childhood mathematics intervention. Science, 333(6045), 968-970.
13. Kemmis, S., McTaggart, R., & Nixon, R. (2014). The action research planner: Doing critical participatory action research. Springer Science & Business Media.
14. Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. Advances in Child Development and Behavior, 42, 197-243.
15. Newcombe, N. S. (2018). Three kinds of spatial cognition. In J. S. Horst & J. K. Lou (Eds.), The Oxford handbook of developmental cognitive neuroscience. Oxford University Press.
16. Pólya, G. (1989). How to solve it: A new aspect of mathematical method. Princeton University Press.
17. Schoenfeld, A. H. (2016). Learning to think mathematically: Problem-solving, metacognition, and sense-making in mathematics. Journal of Education, 196(2), 1-38.

Most read articles by the same author(s)

1 2 > >>