NEUROPROTECTIVE AMYLOID Β N-TERMINAL PEPTIDES DIFFERENTIALLY ALTER HUMAN Α7- AND Α7Β2-NICOTINIC ACETYLCHOLINE (NACH) RECEPTOR SINGLE-CHANNEL PROPERTIES

Main Article Content

Dr Abhay joshi
Dr ashutosh gupta

Keywords

iso-form, receptors, amyloid beta peptides

Abstract

Background and Purpose

Oligomeric amyloid β 1-42 (oAβ1-42) exhibits agonist-like action at human α7- and α7β2-containing nicotinic receptors. The N-terminal amyloid β1-15 fragment (N-Aβ fragment) modulates presynaptic calcium and enhances hippocampal-based synaptic plasticity via α7-containing nicotinic receptors. Further, the N-Aβ fragment and its core sequence, the N-amyloid-beta core hexapeptide (N-Aβcore), protect against oAβ1-42-associated synapto- and neurotoxicity. Here, we investigated how oAβ1-42, the N-Aβ fragment, and the N-Aβcore regulate the single-channel properties of α7- and α7β2-nicotinic receptors.


Experimental Approach

Single-channel recordings measured the impact of acetylcholine, oAβ1-42, the N-Aβ fragment, and the N-Aβcore on the unitary properties of human α7- and α7β2-containing nicotinic receptors expressed in nicotinic-null SH-EP1 cells. Molecular dynamics simulations identified potential sites of interaction between the N-Aβ fragment and orthosteric α7+/α7- and α7+/β2- nicotinic receptor binding interfaces.


Key Results

The N-Aβ fragment and N-Aβcore induced α7- and α7β2-nicotinic receptor single-channel openings. Relative to acetylcholine, oAβ1-42 preferentially enhanced α7β2-nicotinic receptor single-channel open probability and open-dwell times. Co-application with the N-Aβcore neutralized these effects. Further, administration of the N-Aβ fragment alone, or in combination with acetylcholine or oAβ1-42, selectively enhanced α7-nicotinic receptor open probability and open-dwell times (compared to acetylcholine or oAβ1-42).


Conclusions and Implications

Amyloid-beta peptides demonstrate functional diversity in regulating α7- and α7β2-nicotinic receptor function, with implications for a wide range of nicotinic receptor-mediated functions in Alzheimer's disease. The effects of these peptides on α7- and/or α7β2-nicotinic receptors revealed complex interactions with these subtypes, providing novel insights into the neuroprotective actions of amyloid β-derived fragments against the toxic effects of oAβ1-42.

Abstract 36 | pdf Downloads 32

References

1. 1)Andersen, N. D., Nielsen, B. E., Corradi, J., Tolosa, M. F., Feuerbach, D.,Arias, H. R., & Bouzat, C. (2016). Exploring the positive allosteric mod-ulation of human alpha7 nicotinic receptors from a single-channel per-spective. Neuropharmacology,107, 189–200.https://doi.org/ 10.1016/ j.neuropharm. 2016.02.032Arora, K., 2)Alfulaij, N., Higa, J. K., Panee, J., & Nichols, R. A. (2013). Impactof sustained exposure toβ-amyloid on calcium homeostasis and neu-ronal integrity in model nerve cell system expressingα4β2 nicotinicacetylcholine receptors.The Journal of Biological Chemistry,288(16),11175–11190.https://doi.org/10.1074/jbc.M113.453746Azam, L., 3)Winzer-Serhan, U., & Leslie, F. M. (2003). Co-expression ofα7andβ2 nicotinic acetylcholine receptor subunit mRNAs within rat braincholinergic neurons.Neuroscience,119(4), 965–977.https://doi.org/10.1016/s0306-4522(03)00220-3Castellani, R. J., Zhu, X., Lee, H. G., Moreira, P. I., Perry, G., & Smith, M. A.(2007). Neuropathology and treatment of Alzheimer disease: Did welose the forest for the trees?Expert Review of Neurotherapeutics,7(5),473–485.https://doi.org/10.1586/ 14737175.7.5.473Chakrapani, S., 4)Bailey, T. D., & Auerbach, A. (2004). Gating dynamics ofthe acetylcholine receptor extracellular domain.The Journal of GeneralPhysiology,123(4), 341–356.https://doi.org/10.1085/jgp.200309004Chiantia, G., 5)Hidisoglu, E., & Marcantoni, A. (2023). The role of ryanodinereceptors in regulating neuronal activity and its connection to thedevelopment of Alzheimer's disease.Cells,12, 1236.https://doi.org/10.3390/ cells12091236Cirrito, J. R., 6)Yamada, K. A., Finn, M. B., Sloviter, R. S., Bales, K. R.,May, P. C., Schoepp, D. D., Paul, S. M., Mennerick, S., &Holtzman, D. M. (2005). Synaptic activity regulates interstitial fluidamyloid-beta levels in vivo.Neuron,48(6), 913–922.https://doi.org/10.1016/j.neuron.2005.10.028Ciuraszkiewicz, A., Schreibmayer, W., Platzer, D., Orr-Urtreger, A.,Scholze, P., & Huck, S. (2013). Single-channel properties ofα3β4,α3β4α5 andα3β4β2 nicotinic acetylcholine receptors in mice lackingspecific nicotinic acetylcholine receptor subunits.The Journal of Physi-ology,591(13), 3271–3288.https://doi.org/10.1113/ .2012.246595
2. 7)Cline, E. N., Bicca, M. A., Viola, K. L., & Klein, W. L. (2018). The amyloid-beta oligomer hypothesis: Beginning of the third decade.Journal ofAlzheimer's Disease,64(s1), S567–S610.https://doi.org/10.3233/JAD-179941Curtis, M. J., 8)Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A.,Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G.,Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J.,Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experi-ments: Updated guidance on experimental design and analysis andtheir reporting III.British Journal of Pharmacology,179, 3907–3913.https://doi.org/10.1111/bph.15868Dineley, K. T., Bell, K. 9)A., Bui, D., & Sweatt, J. D. (2002).β-amyloid peptideactivatesα7 nicotinic acetylcholine receptors expressed inXenopusoocytes.The Journal of Biological Chemistry,277(28), 25056–25061.https://doi.org/10.1074/jbc.M200066200.