COMPARATIVE NEPHROTOXICITY EVALUATION OF LEVETIRACETAM AND TOPIRAMATE AS SINGLE AND COMBINED DRUG ADMINISTRATION IN RATS
Main Article Content
Keywords
Drug toxicity, Renal impairment, Levetiracetam, Topiramate, Antioxidant, Antiepileptic
Abstract
Background: The antiepileptic medications used to treat seizures are known to produce several dose-dependent complications including renal impairment. The present study aims to evaluate the role of levetiracetam (LEVE) and topiramate (TOPI) on the renal impairment when used either alone or combination in sub-maximal doses in rats.
Methods: Twenty-four adult male Sprague Dawley rats were utilized in the study. Six randomly selected rats were grouped such as group-A (control, normal saline), group-B (TOPI, 400 mg/kg), group-C (LEVE, 600 mg/kg), group-D (combination of LEVE and TOPI) and were treated orally for 21 days. Blood samples were collected under light chloroform anesthesia from retro-orbital plexus and serum was subjected to biochemical estimation. The markers of apoptosis (caspase-3), acute renal damage (neutrophil gelatinoase associated lipocalin, NGAL), antioxidant status [malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase-1 (Gpx-1)] and relative kidney weight were estimated. The data was statistically compared by one-way ANOVA and p-value less than 0.05 was used to indicate the significance of results.
Results: The analysis of data suggested that both TOPI and LEVE significantly (p<0.001) enhanced the caspase-3, NGAL levels and relative kidney weight compared to control group. The combination of these agents was found to enhance further these variations in rats. The MDA level was observed to be enhanced (p<0.001) by both TOPI and LEVE, while CAT, SOD and Gpx-1 were diminished (p<0.001) compared to control. In addition, TOPI and LEVE augmented these changes in antioxidant status when administered in combination.
Conclusion: The results suggest that the sub-maximal doses of TOPI and LEVE might produce renal impairment and use of these in combination could potentiate the renal toxicity. Compromised antioxidant status appears to be the cause for enhanced caspase-3 and NGAL levels. Data indicates caution while utilizing these drugs in patients, especially while treating at higher doses.
References
2. Alshurem M, Aldosari MM, Aljaafari D, Alhashim A, Shariff E, Almatar A, Alhashyan I, Almuaigel M, Almohish N, Altaweel H. Prevalence of Medically Resistant Epilepsy in Saudi Arabia. Neuroepidemiology. 2021;55(3):232-238.
3. Alkhamees AK, Al-Sulaiman AA, Alzahrani AA. Prevalence of epilepsy among children and adolescents in Saudi Arabia. J Epilepsy Res. 2018;8(1):32-35.
4. Alaqeel A, Sabbagh AJ, Mahfouz AA, Al-Fifi SH. Awareness of epilepsy in the eastern region of Saudi Arabia. Epilepsy Behav. 2016;59:93-97.
5. Al-Naimi MS, Rasheed HA, Hussien NR, Al-Kuraishy HM, Al-Gareeb AI. Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury. J Adv Pharm Technol Res. 2019;10(3):95-99. doi:10.4103/japtr.JAPTR_336_18.
6. Hamed SA. The effect of antiepileptic drugs on the kidney function and structure. Expert Rev Clin Pharmacol. 2017;10(9):993-1006. doi:10.1080/17512433.2017.1353418
7. Havali C, Gücüyener K, Buyan N, et al. Does nephrotoxicity exist in pediatric epileptic patients on valproate or carbamazepine therapy?. J Child Neurol. 2015;30(3):301-306. doi:10.1177/0883073814538505.
8. Raza M, Al-Bekairi AM, Ageel AM, Qureshi S. Biochemical basis of sodium valproate hepatotoxicity and renal tubular disorder: time dependence of peroxidative injury. Pharmacol Res. 1997;35(2):153-157. doi:10.1006/phrs.1997.0134.
9. Gezginci-Oktayoglu S, Turkyilmaz IB, Ercin M, Yanardag R, Bolkent S. Vitamin U has a protective effect on valproic acid-induced renal damage due to its anti-oxidant, anti-inflammatory, and anti-fibrotic properties. Protoplasma. 2016;253(1):127-135. doi:10.1007/s00709-015-0796-3.
10. Fariba KA, Saadabadi A. Topiramate. [Updated 2023 Jan 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554530/.
11. Nickels K, Kossoff EH, Eschbach K, Joshi C. Epilepsy with myoclonic-atonic seizures (Doose syndrome): Clarification of diagnosis and treatment options through a large retrospective multicenter cohort. Epilepsia. 2021 Jan;62(1):120-127.
12. El Makawy AI, Mabrouk DM, Ibrahim FM, Ahmed KA. Genotoxic, biochemical and histopathological studies to assessment the topiramate hepatorenal toxicity in mice. Drug Chem Toxicol. 2022;45(1):103-112. doi:10.1080/01480545.2019.1660364.
13. El A, Hamdi H, Eleyan M. Teratogenic Effects of the Anti-Epileptic Drug (Levetiracetam) on Albino Rat Fetuses during Pregnancy and Lactation. RJPBCS. 2015;6(1). https://scholar.cu.edu.eg/?q=hamidahamdi/publications/teratogenic-effects-anti-epileptic-drug-levetiracetam-albino-rat-fetuses-du.
14. Elafros MA, Birbeck GL, Gardiner JC, Siddiqi OK, Sikazwe I, Paneth N, Bositis CM, Okulicz JF. Patient-Reported Adverse Effects Associated with Combination Antiretroviral Therapy and Coadministered Enzyme-Inducing Antiepileptic Drugs. Am J Trop Med Hyg. 2017 Jun;96(6):1505-1511.
15. Moore CF, Protzuk OA, Johnson BA, Lynch WJ. The efficacy of a low dose combination of topiramate and naltrexone on ethanol reinforcement and consumption in rat models. Pharmacol Biochem Behav. 2014 Jan;116:107-15.
16. Zwierzyńska E, Pietrzak B. The differential effect of levetiracetam on memory and anxiety in rats. Epilepsy Behav. 2022 Nov;136:108917.
17. Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003;15(6):725-731. doi:10.1016/j.ceb.2003.10.009
18. Cassidy H, Slyne J, Higgins M, et al. Neutrophil gelatinase-associated lipocalin (NGAL) is localised to the primary cilium in renal tubular epithelial cells - A novel source of urinary biomarkers of renal injury. Biochim Biophys Acta Mol Basis Dis. 2019;1865(12):165532. doi:10.1016/j.bbadis.2019.165532
19. Beloucif A, Kechrid Z, Bekada AMA. Effect of Zinc Deficiency on Blood Glucose, Lipid Profile, and Antioxidant Status in Streptozotocin Diabetic Rats and the Potential Role of Sesame Oil. Biol Trace Elem Res. 2022 Jul;200(7):3236-3247.
20. Seghatoleslam A, Khoshdel Z, Ghafouri R, Fakher S, Molaei M, Namavari M, Zal F. Composition and Anti-Toxicity Effects of Cichorium intybus Distillate on Serum Antioxidant Status in Carbon Tetrachloride-Treated Rats. Arch Razi Inst. 2021 Mar;76(1):107-117.
21. Sharma P, Mandal MB, Katiyar R, Singh SP, Birla H. A Comparative Study of Effects of 28-Day Exposure of Bisphenol A and Bisphenol S on Body Weight Changes, Organ Histology, and Relative Organ Weight. Int J Appl Basic Med Res. 2021 Oct-Dec;11(4):214-220.
22. Nickolas TL, Schmidt-Ott KM, Canetta P, et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol. 2012;59(3):246-255. doi:10.1016/j.jacc.2011.10.854
23. Huang R, Ding L, Ye Y, Wang K, Yu W, Yan B, Liu Z, Wang J. Protective effect of quercetin on cadmium-induced renal apoptosis through cyt-c/caspase-9/caspase-3 signaling pathway. Front Pharmacol. 2022 Aug 16;13:990993.
24. Fu ZJ, Wang ZY, Xu L, Chen XH, Li XX, Liao WT, Ma HK, Jiang MD, Xu TT, Xu J, Shen Y, Song B, Gao PJ, Han WQ, Zhang W. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol. 2020 Sep;36:101671.
25. Bo CRD, de Paula VP, Strazzi APWB, Wolosker N, Aloia TPA, Mazzeo A, Kaufmann OG. Effect of unilateral renal ischemia on the contralateral kidney assessed by Caspase 3 expression. J Vasc Bras. 2021 Jul 12;20:e20210040
26. Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231-1238. doi:10.1016/S0140-6736(05)74811-X
27. Buonafine M, Martinez-Martinez E, Jaisser F. More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clin Sci (Lond). 2018 May 8;132(9):909-923.
28. Karoli R, Gupta N, Karoli Y, Kulshreshtha MR, Tiwari V. Neutrophil Gelatinase-associated Lipocalin (NGAL) as a Marker of Renal Tubular Injury in Metabolic Syndrome Patients with Hyperuricemia. J Assoc Physicians India. 2022 Dec;69(12):11-12.
29. Romejko K, Markowska M, Niemczyk S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int J Mol Sci. 2023 Jun 21;24(13):10470.
30. Erdem KTO, Bedir Z, Kuyrukluyildiz U, Tas HG, Suleyman Z, Bulut S, Mendil AS, Sarigul C, Unver E, Suleyman H. Effect of tocilizumab on ischemia-reperfusion-induced oxido-inflammatory renal damage and dysfunction in rats. Exp Anim. 2022 Nov 10;71(4):491-499.
31. Araos P, Amador CA. Neutrophil gelatinase-associated lipocalin as an immunomodulator in endocrine hypertension. Front Endocrinol (Lausanne). 2022 Oct 25;13:1006790
32. Piko N, Bevc S, Hojs R, Ekart R. The Role of Oxidative Stress in Kidney Injury. Antioxidants (Basel). 2023;12(9):1772. Published 2023 Sep 16. doi:10.3390/antiox12091772
33. Rajendran P, Nandakumar N, Rengarajan T, et al. Antioxidants and human diseases. Clin Chim Acta. 2014;436:332-347. doi:10.1016/j.cca.2014.06.004
34. Yaribeygi H, Farrokhi FR, Rezaee R, Sahebkar A. Oxidative stress induces renal failure: A review of possible molecular pathways. J Cell Biochem. 2018 Apr;119(4):2990-2998.
35. Carcy R, Cougnon M, Poet M, Durandy M, Sicard A, Counillon L, Blondeau N, Hauet T, Tauc M, F Pisani D. Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radic Biol Med. 2021 Jun;169:258-270.
36. Oh H, You JS, Bae H, Park GB, Chung YE. Delivery of recombinant sestrin2 ameliorates oxidative stress, mitochondrial damage and renal dysfunction in contrast-induced acute kidney injury. Biochem Pharmacol. 2023 Sep;215:115761.