Molecular characterization of mt-DNA mutations associated with hypertension and cardiovascular diseases
Main Article Content
Keywords
.
Abstract
Hypertension, a physical condition characterized by elevated blood pressure, stands as a significant contributor to various severe illnesses such as cardiovascular diseases, renal diseases, strokes, and numerous vascular conditions. While environmental factors play a function in the development of hypertension, a substantial portion of its origins can be attributed to genetic factors. Notably, hypertension serves as a primary catalyst for numerous cardiovascular diseases, often culminating in fatalities on a global scale. The multifaceted etiologies of cardiovascular diseases encompass lifestyle choices, environmental factors, and genetic predispositions. This research delved into a relatively unexplored facet of hypertension-related cardiovascular diseases by investigating mitochondrial mutations in patients diagnosed with hypertension. Surprisingly, despite the prevalence of hypertension, a definitive link between this condition and the development of cardiovascular diseases has yet to be conclusively established. The data from 80 patients was included in the study and samples were meticulously gathered from various hospitals, specifically targeting individuals grappling with hypertension and concomitant heart-related ailments. The methodology involved the procurement of saliva followed by the extraction and sequencing of mitochondrial DNA (mtDNA). Subsequently, advanced bioinformatics tools were employed to scrutinize the genetic data, with the prime focus to identify and characterize any mutations associated with mitochondrial physiology. The outcomes of this study hold the potential to be invaluable for both the general population and medical practitioners. By uncovering mitochondrial mutations linked to hypertension, the research provided individuals with hypertension insights into their specific risk factors for cardiovascular diseases. This knowledge, in turn, empowers the population to adopt preventative measures and make informed lifestyle choices. Furthermore, physicians stand to benefit from a deeper understanding of the genetic underpinnings of cardiovascular risks in hypertensive patients, enabling more personalized and effective medical interventions. Conclusively, this research endeavored to bridge gaps in current knowledge, offered a foundation for enhanced care and supervision of persons at stake of cardiovascular diseases due to hypertension
References
2. Bárány, T.; Simon, A.; Szabó, G.; Benko˝, R.; Mezei, Z.; Molnár, L.; Becker, D.; Merkely, B.; Zima, E.; Horváth, E. M. Oxidative Stress-Related Parthanatos of Circulating Mononuclear Leukocytes in Heart Failure. Oxid. Med. Cell. Longev. 2017, 2017, 1249614.
3. Barshad, G., Marom, S., & Cohen, T. (2018). The dynamic interplay between mitochondrial topology and mitochondrial function. Frontiers in Physiology, 9, 1717.
4. Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and 101 Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528.
5. Bray, A.W. and Ballinger, S.W., 2017. Mitochondrial DNA mutations and cardiovascular disease. Current opinion in cardiology, 32(3), p.267.
6. Chang, H. H., Yalamanchili, H. K., & Chen, Y. (2019). TCSBN: a database of tissue and cancer specific biological networks. Nucleic Acids Research, 47(D1), D595-D600.
7. Chen, W., Zhao, H. and Li, Y., 2023. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduction and Targeted Therapy, 8(1), p.333.
8. Clemente-Suárez, V.J., Redondo-Flórez, L., Beltrán-Velasco, A.I., Ramos-Campo, D.J., Belinchón-deMiguel, P., Martinez-Guardado, I., Dalamitros, A.A., Yáñez-Sepúlveda, R., Martín-Rodríguez, A. and Tornero-Aguilera, J.F., 2023. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines, 11(9), p.2488.
9. Dabravolski, S.A., Khotina, V.A., Sukhorukov, V.N., Kalmykov, V.A., Mikhaleva, L.M. and Orekhov, A.N., 2022. The role of mitochondrial DNA mutations in cardiovascular diseases. International Journal of Molecular Sciences, 23(2), p.952.
10. Dabravolski, S.A., Orekhova, V.A., Baig, M.S., Bezsonov, E.E., Starodubova, A.V., Popkova, T.V. and Orekhov, A.N., 2021. The role of mitochondrial mutations and chronic inflammation in diabetes. International journal of molecular sciences, 22(13), p.6733.
11. Deloukas, P.; Kanoni, S.; Willenborg, C.; Farrall, M.; Assimes, T.L.; Thompson, J.R.; Ingelsson, E.; Saleheen, D.; Erdmann, J.; Goldstein, B.A.; et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 2013, 45, 25–33.
12. Ehret, G. B., Ferreira, T., Chasman, D. I., Jackson, A. U., Schmidt, E. M., Johnson, T., ... & Chakravarti, A. (2016). The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics, 48(10), 1171-1184.
13. Gorman, G. S., Chinnery, P. F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., ... & Turnbull, D. M. (2016). Mitochondrial diseases. Nature Reviews Disease Primers, 2, 16080.
14. Khera, A. V., Chaffin, M., Aragam, K. G., Haas, M. E., Roselli, C., Choi, S. H., ... & Kathiresan, S. (2018). Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nature Genetics, 50(9), 1219-1224
15. Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, Ellis SG, Lincoff AM, Topol EJ. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290:898–904.
16. Koboldt, D.C., Steinberg, K.M., Larson, D.E., Wilson, R.K. and Mardis, E.R., 2013. The next-generation sequencing revolution and its impact on genomics. Cell, 155(1), pp.27-38.
17. Lempiäinen, H.; Brænne, I.; Michoel, T.; Tragante, V.; Vilne, B.; Webb, T.R.; Kyriakou, T.; Eichner, J.; Zeng, L.; Willenborg, C.; et al. Network analysis of coronary artery disease risk genes elucidates disease mechanisms and druggable targets. Sci. Rep. 2018, 8, 3434.
18. Leopold, J.A. and Loscalzo, J., 2018. Emerging role of precision medicine in cardiovascular disease. Circulation research, 122(9), pp.1302-1315.
19. Li R, Liu Y, Li Z, Yang L, Wang S, Guan MX. Failures in mitochondrial tRNAMet and tRNAGln metabolism caused by the novel 4401AG mutation are involved in essential hypertension in a Han Chinese Family. Hypertension. 2009;54:329–337.
20. Lopez, A.D.; Mathers, C.D.; Ezzati, M.; Jamison, D.T.; Murray, C.J.L. Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet 2006, 367, 1747–1757.
21. Machnicka, M. A., Milanowska, K., Osman Oglou, O., Purta, E., Kurkowska, M., Olchowik, A., ... & Bujnicki, J. M. (2013). MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Research, 41(D1), D262-D267.
22. Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., ... & Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747-753.
23. Manosroi, W. and Williams, G.H., 2019. Genetics of human primary hypertension: focus on hormonal mechanisms. Endocrine reviews, 40(3), pp.825-856.
24. Mathelier, A., Fornes, O., Arenillas, D. J., Chen, C. Y., Denay, G., Lee, J., ... & Wasserman, W. W. (2016). JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 44(D1), D110-D115.
25. Mensah, G.A., Roth, G.A. and Fuster, V., 2019. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. Journal of the American College of Cardiology, 74(20), pp.2529-2532.
26. Mercer, T. R., Neph, S., Dinger, M. E., Crawford, J., Smith, M. A., Shearwood, A. M., ... & Mattick, J. S. (2011). The human mitochondrial transcriptome. Cell, 146(4), 645-658.
27. Nawrocki, E. P., & Eddy, S. R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics, 29(22), 2933-2935.
28. Padmanabhan, S. and Dominiczak, A.F., 2021. Genomics of hypertension: the road to precision medicine. Nature Reviews Cardiology, 18(4), pp.235-250.
29. Papadopoulou, E., Bouzarelou, D., Tsaousis, G., Papathanasiou, A., Vogiatzi, G., Vlachopoulos, C., Miliou, A., Papachristou, P., Prappa, E., Servos, G. and Ritsatos, K., Application of next-generation sequencing in cardiology: current and future precision medicine implications. Frontiers in Cardiovascular Medicine, 10, p.1202381.
30. Rehman, S., Rehman, E., Ikram, M. and Jianglin, Z., 2021. Cardiovascular disease (CVD): assessment, prediction and policy implications. BMC Public Health, 21(1), pp.1-14.
31. Rose, S.; Carvalho, E.; Diaz, E.C.; Cotter, M.; Bennuri, S.C.; Azhar, G.; Frye, R.E.; Adams, S.H.; Børsheim, E. A comparative study of mitochondrial respiration in circulating blood cells and skeletal muscle fibers in women. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E503–E512.
32. Rossmann, M.P., Dubois, S.M., Agarwal, S. and Zon, L.I., 2021. Mitochondrial function in development and disease. Disease Models & Mechanisms, 14(6), p.dmm048912.
33. Sing CF, Stengard JH, Kardia SL. Genes, environment, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2003;23:1190–1196.
34. Sissler, M., González-Serrano, L. E., & Westhof, E. (2017). Recent advances in mitochondrial aminoacyl-tRNA synthetases and disease. Trends in Molecular Medicine, 23(8), 693-708.
35. Smits, P., Smeitink, J., van den Heuvel, L., & Huynen, M. A. (2007). EtBr-induced mitochondrial rRNA cleavage in a cell-free system from yeast. Nucleic Acids Research, 35(7), 2049-2060.
36. Suzuki, T., & Nagao, A. (2011). Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annual Review of Genetics, 45, 299-329.
37. Taylor, R. W., & Turnbull, D. M. (2005). Mitochondrial DNA mutations in human disease. Nature Reviews Genetics, 6(5), 389-402.
38. Taylor, R.W. and Turnbull, D.M., 2005. Mitochondrial DNA mutations in human disease. Nature Reviews Genetics, 6(5), pp.389-402.
39. Townsend,N.;Wilson,L.;Bhatnagar,P.;Wickramasinghe,K.;Rayner,M.;Nichols,M.Cardiovasculardisease in Europe: Epidemiological update 2016. Eur. Heart. J. 2016, 37, 3232–3245.
40. Tranah, G.J., Manini, T.M., Lohman, K.K., Nalls, M.A., Kritchevsky, S., Newman, A.B., Harris, T.B., Miljkovic, I., Biffi, A., Cummings, S.R. and Liu, Y., 2011. Mitochondrial DNA variation in human metabolic rate and energy expenditure. Mitochondrion, 11(6), pp.855-861.
41. Veronese, N., Stubbs, B., Koyanagi, A., Vaona, A., Demurtas, J., Schofield, P. and Maggi, S., 2019. Mitochondrial genetic haplogroups and cardiovascular diseases: Data from the Osteoarthritis Initiative. PLoS One, 14(3), p.e0213656.
42. Vilne, B., Sawant, A. and Rudaka, I., 2022. Examining the association between mitochondrial genome variation and coronary artery disease. Genes, 13(3), p.516.
43. Wallace, D.C., 2015. Mitochondrial DNA variation in human radiation and disease. Cell, 163(1), pp.33-38.
44. World Health Organization. Worldhealthstatisticsoverview2019: Monitoring health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2019; Available online: https://apps.who.int/iris/handle/10665/311696 (accessed on 22 January 2020).
45. Zhang XH, Lu ZL, Liu L. Coronary heart disease in China. Heart. 2008; 94:1126–1131.
46. Zhou, H., & Rigoutsos, I. (2014). The emerging roles of GPRC5A in diseases. Oncoscience, 1(12), 765.