ELICITOR-MEDIATED AUGMENTATION OF PODOPHYLLOTOXIN BIOSYNTHESIS IN PODOPHYLLUM HEXANDRUM ROYLE: UNVEILING A REMARKABLE ANTICANCER POTENTIAL

Main Article Content

Zahoor Khan
Dr. Bushra Khan
Dr. Javaid Iqbal
Dr. Majid Khan
Dr. Jawad Saeed
Dr. Syed Tanveer Shah
Dr. Hina
Sanan Abid

Keywords

podophyllotoxin, cell suspension culture, elicitors, chitosan, NaCl, sodium alginate, and salicylic acid

Abstract

Podophyllotoxin (PTOX), also known as podophyllin, is one of the most remarkable secondary metabolites of Podophyllum hexandrum (P. hexandrum). PTOX showcases a broad spectrum of therapeutic properties. Notably, PTOX and its derivatives demonstrate anticancer, antimicrobial, antiviral, antifungal, anti-inflammatory, antineoplastic, insecticidal, antiparasitic, and radioprotective effects. These compounds are utilized in the treatment of leukemia and rheumatoid arthritis. The objective of this investigation was to assess the impact of various elicitors on podophyllotoxin (PTOX) production, a valuable anticancer agent, in in-vitro cultures of P. hexandrum, a medicinal plant. The addition of chitosan, sodium chloride (NaCl), salicylic acid, and sodium alginate (NaAlg) enhanced podophyllotoxin production in callus suspension cultures. Results indicated that chitosan exhibited the highest efficacy among the elicitors, followed by NaCl, NaAlg, and salicylic acid. Optimal elicitor concentrations were determined to be 50 mg L-1 for chitosan, 50 mg L-1 for NaCl, 15 mg L-1 for salicylic acid, and 20 mg L-1 for NaAlg. Although the highest PTOX yield (619.33 µg/g DW) was achieved with chitosan at 150 mg L-1, higher concentrations adversely affected growth. PTOX accumulation was also influenced by the growth phase of the culture, with the exponential phase exhibiting the highest levels. Treatment with NaAlg resulted in a fivefold increase in PTOX compared to the control, highlighting the potential of this method for augmenting PTOX production. This study underscores the efficacy of elicitors in enhancing PTOX production in P. hexandrum cultures. Chitosan emerged as the most potent compound for stimulating podophyllotoxin production in callus suspension cultures of P. hexandrum, suggesting its promise as an elicitor for PTOX biosynthesis.

Abstract 120 | PDF Downloads 61

References

1. Aftab, J., Aziz, E., Zulqarnain, A., Nasim, M. T., Sajjad, A., Zafar, M. Q., & Batool, R. (2019). Study of Anticancer and Antibacterial Activities of Podophyllum hexandrum as Natural Curatives.
2. Ahmad, R., Sharma, V. K., Rai, A. K., Shivananda, R. D., & Shivananda, B. G. (2007). Production of lignans in callus culture of Podophyllum hexandrum. Tropical Journal of Pharmaceutical Research, 6(4), 803-808.
3. Anbazhagan, V. R., Ahn, C. H., Harada, E., Kim, Y. S., & Choi, Y. E. (2008). Podophyllotoxin production via cell and adventitious root cultures of Podophyllum peltatum. In Vitro Cellular & Developmental Biology-Plant, 44, 494-501.Andres, C., 1987. Expanding applications for alginate technologies. Food Process., 48(2):30-
4. Berim, A., Spring, O., Conrad, J., Maitrejean, M., Boland, W., & Petersen, M. (2005). Enhancement of lignan biosynthesis in suspension cultures of Linum nodiflorum by coronalon, indanoyl-isoleucine and methyl jasmonate. Planta, 222, 769-776.
5. Bhattacharyya, D., Sinha, R., Ghanta, S., Chakraborty, A., Hazra, S., & Chattopadhyay, S. (2012). Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome science, 10, 1-12.
6. Bouzroud, S., El Maaiden, E., Sobeh, M., Merghoub, N., Boukcim, H., Kouisni, L., & El Kharrassi, Y. (2023). Biotechnological approaches to producing natural antioxidants: anti-ageing and skin longevity prospects. International Journal of Molecular Sciences, 24(2), 1397.
7. Chalise, P., Paneru, Y. R., Sher, H., Ur-Rahman, I., Hussain, W., Abbasi, A. M., ... & Paniagua-Zambrana, N. Y. (2020). Podophyllum hexandrum Royle Berberidaceae. In Ethnobotany of the Himalayas (pp. 1-8). Cham: Springer International Publishing.
8. Chattopadhyay, S., Srivastava, A. K., Bhojwani, S. S., & Bisaria, V. S. (2002). Production of podophyllotoxin by plant cell cultures of Podophyllum hexandrum in bioreactor. Journal of Bioscience and Bioengineering, 93(2), 215-220.
9. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) (2007) Consideration of proposals for amendment of Appendics I and II. Fourteenth Meeting of the Conference of the Parties. The Hague (Netherlands). CoP14 Prop 27:1–14
10. Cunha, W. R., Silva, M. L. A., Veneziani, R. S., Ambrósio, S. R., & Bastos, J. K. (2012). Lignans: Chemical and biological properties. Phytochemicals-A global perspective of their role in nutrition and health.
11. Furmanowa, M., Glowniak, K., Syklowska-Baranek, K., Zgórka, G., & Józefczyk, A. (1997). Effect of picloram and methyl jasmonate on growth and taxane accumulation in callus culture of Taxus× media var. Hatfieldii. Plant cell, tissue and organ culture, 49, 75-79.
12. Guerriero, G., Berni, R., Muñoz-Sanchez, J. A., Apone, F., Abdel-Salam, E. M., Qahtan, A. A., ... & Faisal, M. (2018). Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes, 9(6), 309.
13. Ivanova, D. I., Nedialkov, P. T., Tashev, A. N., Olech, M., Nowak, R., Ilieva, Y. E., ... & Najdenski, H. M. (2021). Junipers of various origins as potential sources of the anticancer drug precursor podophyllotoxin. Molecules, 26(17), 5179.
14. Kitic, D., Miladinovic, B., Randjelovic, M., Szopa, A., Sharifi-Rad, J., Calina, D., & Seidel, V. (2022). Anticancer potential and other pharmacological properties of Prunus armeniaca L.: an updated overview. Plants, 11(14), 1885.
15. Largia, M. J. V., Shilpha, J., Satish, L., Swamy, M. K., & Ramesh, M. (2023). Elicitation: An Efficient Strategy for Enriched Production of Plant Secondary Metabolites. Phytochemical Genomics: Plant Metabolomics and Medicinal Plant Genomics, 477-497.
16. https://doi.org/10.1007/978-981-19-5779-6_19
17. Majumder A, “Biotechnological approaches for the production of cytotoxic anticancerous compounds”, PhD thesis, Calcutta University, Calcutta, India, 2008.
18. Malik, S., Biba, O., Grúz, J., Arroo, R. R. J., & Strnad, M. (2014). Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochemistry reviews, 13, 893-913.
19. Osmakov, D. I., Kalinovskii, A. P., Belozerova, O. A., Andreev, Y. A., & Kozlov, S. A. (2022). Lignans as pharmacological agents in disorders related to oxidative stress and inflammation: chemical synthesis approaches and biological activities. International journal of molecular sciences, 23(11), 6031.
20. Ozyigit, I. I., Dogan, I., Hocaoglu-Ozyigit, A., Yalcin, B., Erdogan, A., Yalcin, I. E., ... & Kaya, Y. (2023). Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14, 1132555.
21. Rizwan, Ahmad, Dr & Saurabh, Sharma & Sharma, Satish & Kumar, Vishal & Bari, Darakhshan & Chhavi, Verma. (2021). Detection of podophyllotoxin from callus culture of podophyllum hexandrum.
22. Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive reviews in food science and food safety, 17(3), 512-531.
23. Satake, H., Koyama, T., Bahabadi, S. E., Matsumoto, E., Ono, E., & Murata, J. (2015). Essences in metabolic engineering of lignan biosynthesis. Metabolites, 5(2), 270-290.
24. Shah, Z., Gohar, U. F., Jamshed, I., Mushtaq, A., Mukhtar, H., Zia-UI-Haq, M., ... & Popovici, B.(2021). Podophyllotoxin: history, recent advances and future prospects. Biomolecules, 11(4), 603.
25. Sharifi-Rad, J., Herrera-Bravo, J., Kamiloglu, S., Petroni, K., Mishra, A. P., Monserrat-Mesquida, M., ... & Cho, W. C. (2022). Recent advances in the therapeutic potential of emodin for human health. Biomedicine & Pharmacotherapy, 154, 113555.
26. Sharma, N., Gupta, N., Gupta, A., Thakur, R., Bhushan, S., Ahuja, P.S. and Shanker, K., 2016. Chitosan and methyl jasmonate induced oxidative stress and enhanced production of podophyllotoxin in Podophyllum hexandrum Royle. Frontiers in plant science, 7,1974.
27. Smollny, T., Wichers, H., Kalenberg, S., Shahsavari, A., Petersen, M., & Alfermann, A. W. (1998). Accumulation of podophyllotoxin and related lignans in cell suspension cultures of Linum album. Phytochemistry, 48(6), 975-979.
28. Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762.
29. Yousefzadi, M., Sharifi, M., Behmanesh, M., Ghasempour, A., Moyano, E., & Palazon, J. (2010). Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis. Biotechnology letters, 32, 1739-1743.
30. Mondal, M., Gantait, I., & Bhattacharya, S. (2022). Ethnomedicine and indigenous people: analysis of economic and ecological sustainability in Jangalmahal area of Paschim Medinipur and Jhargram districts, West Bengal, India. In Indigenous People and Nature (pp. 133-170). Elsevier.
31. Bajwa, M. N., Bibi, A., Idrees, M. Z., Zaman, G., Farooq, U., & Bhatti, T. T. (2021). Elicitation, a mechanistic approach to change the metabolic pathway of plants to produce pharmacological important compounds in in-vitro cell cultures. Glob J. Eng, 8.8(1): GJES.MS.ID.000678.
32. Srujana, S., & Bhagat, D. (2022). Chemical synthesis of chitosan (CS)–sodium alginate (ALG) nanoparticles. Nanotechnology for Environmental Engineering, 7(1), 289-296.
33. Nandy, S., Das, S., & Ghosh, P. (2021). Chitosan induced podophyllotoxin production in cell suspension cultures of Podophyllum hexandrum Royle. Plant Cell, Tissue and Organ Culture (PCTOC), 144(1), 1-10.
34. Nandy, S., Das, T., & Dey, A. (2021). Role of jasmonic acid and salicylic acid signaling in secondary metabolite production. Jasmonates and Salicylates Signaling in Plants, 87-113.
35. Chepel, V., Lisun, V., & Skrypnik, L. (2020). Changes in the content of some groups of phenolic compounds and biological activity of extracts of various parts of heather (Calluna vulgaris (L.) Hull) at different growth stages. Plants, 9(8), 926.
36. Cui, Q., Du, R., Liu, M., & Rong, L. (2020). Lignans and their derivatives from plants as antivirals. Molecules, 25(1), 183.
37. Srivastava, U., & Sood, H. (2020). Propagation of Podophyllum hexandrum Royale to Enhance Production of Podophyllotoxin. Endangered Plants.
38. Zhao, J., Davis, L. C., & Verpoorte, R. (2020). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 44, 107606.Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology advances, 23(4), 283-333.
39. De Silva, S. F., & Alcorn, J. (2019). Flaxseed lignans as important dietary polyphenols for cancer prevention and treatment: Chemistry, pharmacokinetics, and molecular targets. Pharmaceuticals, 12(2), 68.
40. Golkar, P., Taghizadeh, M., & Noormohammadi, A. (2019). Effects of sodium alginate elicitation on secondary metabolites and antioxidant activity of safflower genotypes under in vitro salinity stress. In Vitro Cellular & Developmental Biology-Plant, 55, 527-538.
41. Mishra, P., Dubey, A., & Sharma, P. (2019). Elicitation: A stimulation for enhancement of secondary metabolite production in plants. Physiology and Molecular Biology of Plants, 25(6), 1257-1279.
42. Yu, Y., Wang, T., Wu, Y., Zhou, Y., Jiang, Y., & Zhang, L. (2019). Effect of elicitors on the metabolites in the suspension cell culture of Salvia miltiorrhiza Bunge. Physiology and molecular biology of plants, 25, 229-242.
43. Govindaraju, S., & Arulselvi, P. I. (2018). Effect of cytokinin combined elicitors (l-phenylalanine, salicylic acid and chitosan) on in vitro propagation, secondary metabolites and molecular characterization of medicinal herb–Coleus aromaticus Benth (L). Journal of the Saudi Society of Agricultural Sciences, 17(4), 435-444.
44. Khan, T., Mazumder, M. S. I., & Hossain, M. M. (2017). Elicitors in plant tissue culture. Asian Pacific Journal of Tropical Biomedicine, 7(4), 329-339
45. Giri, A., Narasu, M. L., & Dhingra, V. (2016). Chitosan mediated enhancement of Podophyllotoxin content in Podophyllum peltatum L. callus cultures. Journal of Applied Research on Medicinal and Aromatic Plants, 3, 66-72.
46. Teponno, R. B., Kusari, S., & Spiteller, M. (2016). Recent advances in research on lignans and neolignans. Natural product reports, 33(9), 1044-1092.
47. Li, M., Zhang, D., Li, X., Xu, G., Bai, X., & Zhao, Y. (2013). Elicitors and their roles in plant secondary metabolism. Yi chuan Hereditas, 35(6), 631–641.
48. Wasternack, C., & Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of botany, 111(6), 1021-1058.
49. Doughari, J. H. (2012). Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents,1-33. Rijeka, Croatia: INTECH Open Access Publisher.
50. Khawar, K. M., Zeng, Q., & Wu, X. (2012). Elicitation, an Effective Strategy for the Production of Bioactive Plant Secondary Metabolites: A Review. Medicinal Chemistry Research, 21, 4159–4179.
51. Ferri, M., & Tassoni, A. (2011). Chitosan as elicitor of health beneficial secondary metabolites in in vitro plant cell cultures. Handbook of chitosan research and applications, 389-414.
52. Li, W., Li, M. F., Yang, D. L., Xu, R., & Zhang, Y. R. (2009). Production of podophyllotaxin by root culture of Podophyllum hexandrum Royle. Electron Journal of Biology, 5(2), 34-9.
53. Nadeem, M., Palni, L. M. S., Kumar, A., & Nandi, S. K. (2007). Podophyllotoxin content, above-and belowground biomass in relation to altitude in Podophyllum hexandrum populations from Kumaun region of the Indian Central Himalaya. Planta medica, 73(04), 388-391.
54. Hamayun, M.; Khan, S.A.; Lee, I.-J.; Khan, M.A (2006). Conservation assessment of Hindu-Kush Mountain Region of Pakistan: a case study of Utror and Gabral Valleys, District Swat, Pakistan. Asian Journal of Plant Sciences, 4(2): 34-39
55. van Fürden, B., Humburg, A., & Fuss, E. (2005). Influence of methyl jasmonate on podophyllotoxin and 6-methoxypodophyllotoxin accumulation in Linum album cell suspension cultures. Plant cell reports, 24, 312-317.
56. van Fürden, B., Humburg, A., & Fuss, E. (2005). Influence of methyl jasmonate on podophyllotoxin and 6-methoxypodophyllotoxin accumulation in Linum album cell suspension cultures. Plant cell reports, 24, 312-317.
57. Farkya, S., Bisaria, V. S., & Srivastava, A. K. (2004). Biotechnological aspects of the production of the anticancer drug podophyllotoxin. Applied microbiology and biotechnology, 65, 504-519.
58. Chattopadhyay, S., Srivastava, A. K., & Bisaria, V. S. (2002). Optimization of culture parameters for production of podophyllotoxin in suspension culture of Podophyllum hexandrum. Applied biochemistry and biotechnology, 102, 381-393.
59. Giri, A., & Lakshmi Narasu, M. (2000). Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs. Cytotechnology, 34, 17-26.
60. Berkowitz, D. B., Choi, S., & Maeng, J. H. (2000). Enzyme-assisted asymmetric total synthesis of (−)-podophyllotoxin and (−)-picropodophyllin. The Journal of organic chemistry, 65(3), 847-860.
61. Canel, C., Moraes, R. M., Dayan, F. E., & Ferreira, D. (2000). Podophyllotoxin. Phytochemistry, 54(2), 115-120.
62. CITES (2000) Implimentation of CITES appendix II listing of Jatamansi, Nardostachys gradiflora and kutki, Picrorhiza kurroa. Complied by Traffic International, 1–11
63. Konuklugil, B., Schmidt, T. J., & Alfermann, A. W. (1999). Accumulation of aryltetralin lactone lignans in cell suspension cultures of Linum nodiflorum. Planta medica, 65(06), 587-588.
64. Zabetakis, I., Edwards, R., & O'Hagan, D. (1999). Elicitation of tropane alkaloid biosynthesis in transformed root cultures of Datura stramonium. Phytochemistry, 50(1), 53-56.
65. Choudhary, D. K., Kaul, B. L., & Khan, S. (1998). Cultivation and conservation of Podophyllum hexandrum-an overview. Journal of Medicinal and Aromatic Plant Sciences, 20,1071-1073.
66. Muranaka, T., Miyata, M., Ito, K., & Tachibana, S. (1998). Production of podophyllotoxin in Juniperus chinensis callus cultures treated with oligosaccharides and a biogenetic precursor in honour of Professor GH Neil Towers 75th Birthday. Phytochemistry, 49(2), 491-496.
67. Airi, S., Rawal, R. S., Dhar, U., & Purohit, A. N. (1997). Population studies on Podophyllum hexandrum Royle-a dwindling, medicinal plant of the Himalaya. Plant Genetic Resources Newsletter,110, 20– 34.
68. Yukimune, Y., Tabata, H., Higashi, Y., & Hara, Y. (1996). Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nature biotechnology, 14(9), 1129-1132.
69. Gundlach, H., Müller, M. J., Kutchan, T. M., & Zenk, M. H. (1992). Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceedings of the National Academy of Sciences, 89(6), 2389-2393.
70. Arumugam, N., & Bhojwani, S. S. (1990). Somatic embryogenesis in tissue cultures of Podophyllum hexandrum. Canadian Journal of Botany, 68(3), 487-491.
71. Van Uden, W., Pras, N., & Maingré, T. M. (1990). The accumulation of podophyllotoxin-β-D-glucoside by cell suspension cultures derived from the conifer Callitris drummondii. Plant cell reports, 9, 257-260.
72. van Uden, W., Pras, N., Visser, J. F., & Malingré, T. M. (1989). Detection and identification of podophyllotoxin produced by cell cultures derived from Podophyllum hexandrum Royle. Plant Cell Reports, 8, 165-168.
73. Kadkade PG. (1981). Formation of podophyllotoxin by Podophyllum peltatum tissue cultures. Nature Wissen chaften, 68 481–482.
74. Shah, A. C. (1975). Chemistry and application of sodium alginate. Man-Made Text. India, 18, 681-5.
75. Cottrell, I.W. and P. Kovacs, 1980. Alginates. In Handbook of water-soluble gums and resins, edited by R.L. Davidson. New York, McGraw-Hill, 2.1- 2.43
76. Connick, W.J. Jr., R.E. Lee and J. Rawson, 1984. Encapsulation with seaweed-based gels: a new process. Agriculture Resources., 32(10):8-9
77. Foster, S. (1992, July). Medicinal plant conservation and genetic resources: Examples from the temperate Northern hemisphere. In WOCMAP I-Medicinal and Aromatic Plants Conference: part 4 of 4 330 (pp. 67-74).
78. Singh, J., Kumar, S., Singh, M., Ahuja, P.S. and Kumar, S., 2011. Chitosan mediated enhancement in intracellular protein and secondary metabolite production in hairy root cultures of Podophyllum hexandrum Royle. Plant Cell, Tissue and Organ Culture (PCTOC), 105(3), 317-326.