A STUDY TO ASSESS THE RISK FACTORS AND CLINICAL CONDITIONS ASSOCIATED WITH PHYSIOLOGICAL JAUNDICE PROGRESSING TO PATHOLOGICAL JAUNDICE IN NEONATES
Main Article Content
Keywords
neonatal jaundice, physiological jaundice, pathological jaundice, risk factors, clinical conditions
Abstract
Background: Neonatal jaundice is a common condition, with physiological jaundice affecting up to 60-80% of newborns. However, some neonates may progress to pathological jaundice, leading to serious complications if left untreated. This study aimed to assess the risk factors and clinical conditions associated with the progression of physiological jaundice to pathological jaundice in neonates.
Methods: A prospective observational study was conducted in the Neonatal Intensive Care Unit (NICU) and obstetric ward at JNU hospital from April 2023 to March 2024. The study included 100 neonates with physiological jaundice. Risk factors and clinical conditions were assessed, and serum bilirubin levels were monitored. Statistical analysis was performed using appropriate tests.
Results: Of the 100 neonates, 85% had physiological jaundice, and 15% progressed to pathological jaundice. Prematurity (aOR: 4.82, 95% CI: 1.12-20.76, p = 0.035) and low birth weight (aOR: 4.15, 95% CI: 1.06-16.29, p = 0.041) were significant risk factors for the progression to pathological jaundice. Sepsis (20%), hypothyroidism (13.3%), polycythemia (13.3%), and cephalhematoma (20%) were the most common clinical conditions associated with the progression to pathological jaundice. The mean time to progression was 72.4 ± 18.2 hours.
Conclusion: Prematurity, low birth weight, sepsis, hypothyroidism, and cephalhematoma were significant risk factors for the progression of physiological jaundice to pathological jaundice in neonates. Early identification and close monitoring of neonates with these risk factors are essential for timely intervention and prevention of complications.
References
2. Olusanya BO, Kaplan M, Hansen TWR. Neonatal hyperbilirubinaemia: a global perspective. Lancet Child Adolesc Health. 2018;2(8):610-620.
3. Maisels MJ, Watchko JF, Bhutani VK, Stevenson DK. An approach to the management of hyperbilirubinemia in the preterm infant less than 35 weeks of gestation. J Perinatol. 2012;32(9):660-664.
4. Ullah S, Rahman K, Hedayati M. Hyperbilirubinemia in neonates: types, causes, clinical examinations, preventive measures and treatments: a narrative review article. Iran J Public Health. 2016;45(5):558-568.
5. Kaplan M, Hammerman C. Glucose-6-phosphate dehydrogenase deficiency and severe neonatal hyperbilirubinemia: a complexity of interactions between genes and environment. Semin Fetal Neonatal Med. 2010;15(3):148-156.
6. Ramachandran A. Neonatal hyperbilirubinaemia. Paediatr Child Health. 2015;25(4):162-168.
7. Erdeve O, Okulu E, Olukman O, et al. The Turkish Neonatal Jaundice Registry for the years 2015-2016. PLoS One. 2018;13(11):e0206679.
8. Mercer JS, Erickson-Owens DA, Collins J, Barcelos MO, Parker AB, Padbury JF. Effects of delayed cord clamping on residual placental blood volume, hemoglobin and bilirubin levels in term infants: a randomized controlled trial. J Perinatol. 2017;37(3):260-264.
9. Amin SB. Clinical assessment of bilirubin-induced neurotoxicity in premature infants. Semin Perinatol. 2004;28(5):340-347.
10. Mishra S, Chawla D, Agarwal R, Deorari AK, Paul VK. Transcutaneous bilirubin levels in healthy term and late preterm Indian neonates. Indian J Pediatr. 2010;77(1):45-50.
1. References:
11. Bhutani VK, Stark AR, Lazzeroni LC, Poland R, Gourley GR, Kazmierczak S, et al. Predischarge screening for severe neonatal hyperbilirubinemia identifies infants who need phototherapy. J Pediatr. 2013;162(3):477-482.e1. doi:10.1016/j.jpeds.2012.08.022
12. Olusanya BO, Kaplan M, Hansen TWR. Neonatal hyperbilirubinaemia: a global perspective. Lancet Child Adolesc Health. 2018;2(8):610-620. doi:10.1016/S2352-4642(18)30139-1
13. Maisels MJ, Watchko JF, Bhutani VK, Stevenson DK. An approach to the management of hyperbilirubinemia in the preterm infant less than 35 weeks of gestation. J Perinatol. 2012;32(9):660-664. doi:10.1038/jp.2012.71
14. Sarici SU, Serdar MA, Korkmaz A, Erdem G, Oran O, Tekinalp G, et al. Incidence, course, and prediction of hyperbilirubinemia in near-term and term newborns. Pediatrics. 2004;113(4):775-780. doi:10.1542/peds.113.4.775
15. Watchko JF, Maisels MJ. Jaundice in low birthweight infants: pathobiology and outcome. Arch Dis Child Fetal Neonatal Ed. 2003;88(6):F455-F458. doi:10.1136/fn.88.6.f455
16. Bhutani VK, Johnson L, Sivieri EM. Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics. 1999;103(1):6-14. doi:10.1542/peds.103.1.6
17. Sgro M, Campbell D, Shah V. Incidence and causes of severe neonatal hyperbilirubinemia in Canada. CMAJ. 2006;175(6):587-590. doi:10.1503/cmaj.060328
18. Zecca E, Romagnoli C, Tortorolo G. Neonatal hyperbilirubinemia and hypothyroidism. J Pediatr. 2002;141(2):287-288. doi:10.1067/mpd.2002.126399
19. Sgro M, Campbell D, Barozzino T, Shah V. Acute neurological findings in a national cohort of neonates with severe neonatal hyperbilirubinemia. J Perinatol. 2011;31(6):392-396. doi:10.1038/jp.2010.137
20. Zecca E, Romagnoli C, Vento G, Tiberi E, De Carolis MP. Neonatal hyperbilirubinemia and hypothyroidism. J Pediatr. 2003;142(4):457-458. doi:10.1067/mpd.2003.159
21. Huang MJ, Kua KE, Teng HC, Tang KS, Weng HW, Huang CS. Risk factors for severe hyperbilirubinemia in neonates. Pediatr Res. 2004;56(5):682-689. doi:10.1203/01.PDR.0000141846.37253.AF
22. Kaplan M, Hammerman C. Glucose-6-phosphate dehydrogenase deficiency and severe neonatal hyperbilirubinemia: a complexity of interactions between genes and environment. Semin Fetal Neonatal Med. 2010;15(3):148-156. doi:10.1016/j.siny.2009.10.007
23. Bhutani VK, Johnson LH. Newborn jaundice and kernicterus--health and societal perspectives. Indian J Pediatr. 2003;70(5):407-416. doi:10.1007/BF02723615