OVERVIEW OF MULTIPLE SCLEROSIS
Main Article Content
Keywords
.
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system (CNS), characterized by immune-mediated assaults on the myelin sheath. This autoimmune disorder primarily impacts young individuals and can result in permanent axonal degeneration. The manifestations of MS vary, encompassing relapsing-remitting MS, primary-progressive MS, and secondary-progressive MS. The etiology of the disease stems from an immune system dysfunction, culminating in the obliteration of healthy nervous system cells. Therapeutic approaches for MS are geared towards averting exacerbations and protracted functional deterioration, with diverse FDA-endorsed drugs stratified according to their efficacy in relapse mitigation. The precise origin of MS remains elusive; nonetheless, immunomodulated genetic predisposition and environmental factors are postulated to exert considerable influence on its onset.
References
2. Patejdl R, Zettl UK: The pathophysiology of motor fatigue and fatigability in multiple sclerosis. Frontiers in Neurology. 2022, 13. 10.3389/fneur.2022.891415
3. Kee R, Naughton M, McDonnell GV, Howell OW, Fitzgerald DC: A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines. 2022, 10:2604.
4. Eslahi M, Nematbakhsh N, Dastmalchi N, Teimourian S, Safaralizadeh R: An Updated Review of Epigenetic-Related Mechanisms and their Contribution to Multiple Sclerosis Disease. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2023, 22:381-393.
5. Kiselev IS, Kulakova OG, Boyko AN, Favorova OO: DNA Methylation As an Epigenetic Mechanism in the Development of Multiple Sclerosis. Acta Naturae. 2021, 13:45-57. 10.32607/actanaturae.11043
6. Erkal B, Akçeşme B, Çoban A, Korkut Ş V: A comprehensive in silico analysis of multiple sclerosis related non-synonymous SNPs and their potential effects on protein structure and function. Mult Scler Relat Disord. 2022, 68:104253. 10.1016/j.msard.2022.104253
7. Kalia M, Miotto M, Ness D, et al.: Molecular dynamics analysis of superoxide dismutase 1 mutations suggests decoupling between mechanisms underlying ALS onset and progression. Comput Struct Biotechnol J. 2023, 21:5296-5308. 10.1016/j.csbj.2023.09.016
8. Jacobs BM, Noyce AJ, Bestwick J, Belete D, Giovannoni G, Dobson R: Gene-Environment Interactions in Multiple Sclerosis: A UK Biobank Study. Neurol Neuroimmunol Neuroinflamm. 2021, 8. 10.1212/nxi.0000000000001007
9. Omar D, Sawsan S, Afnan A: Exploring the Effect of Genetic, Environmental and Lifestyle Factors on Multiple Sclerosis Susceptibility. Multiple Sclerosis. Uday K, Abhishek S (eds): IntechOpen, Rijeka; 2022. Ch. 3. 10.5772/intechopen.105834
10. Zarghami A, Li Y, Claflin SB, van der Mei I, Taylor BV: Role of environmental factors in multiple sclerosis. Expert Rev Neurother. 2021, 21:1389-1408. 10.1080/14737175.2021.1978843
11. Pafiti A, Krashias G, Tzartos J, et al.: A Comparison of Two Analytical Approaches for the Quantification of Neurofilament Light Chain, a Biomarker of Axonal Damage in Multiple Sclerosis. Int J Mol Sci. 2023, 24. 10.3390/ijms241310787
12. Mey GM, Mahajan KR, DeSilva TM: Neurodegeneration in multiple sclerosis. WIREs Mech Dis. 2023, 15:e1583. 10.1002/wsbm.1583
13. Steffen F, Uphaus T, Ripfel N, et al.: Serum Neurofilament Identifies Patients With Multiple Sclerosis With Severe Focal Axonal Damage in a 6-Year Longitudinal Cohort. Neurol Neuroimmunol Neuroinflamm. 2023, 10. 10.1212/nxi.0000000000200055
14. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W: Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain. 2000, 123 ( Pt 6):1174-1183. 10.1093/brain/123.6.1174
15. Eliseeva DD, Zakharova MN: [Mechanisms of Neurodegeneration in Multiple Sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova. 2022, 122:5-13. 10.17116/jnevro20221220725
16. Correale J, Marrodan M, Ysrraelit MC: Mechanisms of Neurodegeneration and Axonal Dysfunction in Progressive Multiple Sclerosis. Biomedicines. 2019, 7. 10.3390/biomedicines7010014
17. Bergaglio T, Luchicchi A, Schenk GJ: Engine Failure in Axo-Myelinic Signaling: A Potential Key Player in the Pathogenesis of Multiple Sclerosis. Front Cell Neurosci. 2021, 15:610295. 10.3389/fncel.2021.610295
18. 18. Angelini G, Bani A, Constantin G, Rossi B: The interplay between T helper cells and brain barriers in the pathogenesis of multiple sclerosis. Front Cell Neurosci. 2023, 17:1101379. 10.3389/fncel.2023.1101379
19. Hoettels BA: Mechanisms for Extracellular Matrix-Dependent Blood-Brain Barrier Dysfunction. Boise State University, 2021.
20. Zhang L, Tang S, Ma Y, et al.: RGMa Participates in the Blood-Brain Barrier Dysfunction Through BMP/BMPR/YAP Signaling in Multiple Sclerosis. Front Immunol. 2022, 13:861486. 10.3389/fimmu.2022.861486
21. Nishihara H, Perriot S, Gastfriend BD, et al.: Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain. 2022, 145:4334-4348. 10.1093/brain/awac019
22. Patabendige A, Janigro D: The role of the blood-brain barrier during neurological disease and infection. Biochem Soc Trans. 2023, 51:613-626. 10.1042/bst20220830
23. Khouzam HR: The Psychiatric Manifestations of Multiple Sclerosis and their Treatment. Journal of Spine Research & Reports SRC/JSRR-104 DOI: doi org/1047363/JSRR/2022 (1). 2022, 103.
24. Altun Y, BULUT H, Ali A: Unusual primary manifestations of multiple sclerosis: A case report. Journal of Surgery and Medicine. 2021, 5:575-577.
25. Javalkar V, McGee J, Minagar A: Clinical Manifestations of Multiple Sclerosis. 2016. 1-12. 10.1016/B978-0-12-800763-1.00001-4
26. Yang R, Dunn JF: Multiple sclerosis disease progression: Contributions from a hypoxia-inflammation cycle. Mult Scler. 2019, 25:1715-1718. 10.1177/1352458518791683
27. Alvino B, Arianna F, Assunta B, et al.: Prevalence and predictors of bowel dysfunction in a large multiple sclerosis outpatient population: an Italian multicenter study. J Neurol. 2022, 269:1610-1617. 10.1007/s00415-021-10737-w
28. Johansson K, Schalling E, Hartelius L: Self-Reported Changes in Cognition, Communication and Swallowing in Multiple Sclerosis: Data from the Swedish Multiple Sclerosis Registry and from a National Survey. Folia Phoniatr Logop. 2021, 73:50-62. 10.1159/000505063
29. Critch AL, Snow NJ, Alcock LR, Chaves AR, Buragadda S, Ploughman M: Multiple sclerosis-related heat sensitivity linked to absence of DMT prescription and subjective hand impairment but not autonomic or corticospinal dysfunction. Mult Scler Relat Disord. 2023, 70:104514. 10.1016/j.msard.2023.104514
30. Gervasoni E, Bertoni R, Anastasi D, et al.: Acute Thermoregulatory and Cardiovascular Response to Submaximal Exercise in People With Multiple Sclerosis. Front Immunol. 2022, 13:842269. 10.3389/fimmu.2022.842269
31. Elser H, Parks RM, Moghavem N, et al.: Anomalously warm weather and acute care visits in patients with multiple sclerosis: A retrospective study of privately insured individuals in the US. PLoS Med. 2021, 18:e1003580. 10.1371/journal.pmed.1003580
32. Oh J: Diagnosis of Multiple Sclerosis. Continuum (Minneap Minn). 2022, 28:1006-1024. 10.1212/con.0000000000001156
33. Ortiz M, Mallen V, Boquete L, et al.: Diagnosis of multiple sclerosis using optical coherence tomography supported by artificial intelligence. Mult Scler Relat Disord. 2023, 74:104725. 10.1016/j.msard.2023.104725
34. Hollen C, Neilson LE, Barajas RF, Greenhouse I: Oxidative stress in multiple sclerosis—Emerging imaging techniques. Frontiers in Neurology. 2023, 13:1025659.
35. Marenna S, Rossi E, Huang SC, Castoldi V, Comi G, Leocani L: Visual evoked potentials waveform analysis to measure intracortical damage in a preclinical model of multiple sclerosis. Front Cell Neurosci. 2023, 17:1186110. 10.3389/fncel.2023.1186110
36. Jacques FH, Apedaile BE, Danis I, Sikati-Foko V, Lecompte M, Fortin J: Motor Evoked Potential-A Pilot Study Looking at Reliability and Clinical Correlations in Multiple Sclerosis. J Clin Neurophysiol. 2023. 10.1097/wnp.0000000000001003
37. Maarouf A, Audoin B, Pelletier J: [Current management of multiple sclerosis]. Rev Prat. 2022, 72:399-404.
38. Yang JH, Rempe T, Whitmire N, Dunn-Pirio A, Graves JS: Therapeutic Advances in Multiple Sclerosis. Front Neurol. 2022, 13:824926. 10.3389/fneur.2022.824926
39. Callegari I, Derfuss T, Galli E: Update on treatment in multiple sclerosis. Presse Med. 2021, 50:104068. 10.1016/j.lpm.2021.104068
40. Samjoo IA, Drudge C, Walsh S, et al.: Comparative efficacy of therapies for relapsing multiple sclerosis: a systematic review and network meta-analysis. J Comp Eff Res. 2023, 12:e230016. 10.57264/cer-2023-0016
41. Dimitriou NG, Meuth SG, Martinez-Lapiscina EH, Albrecht P, Menge T: Treatment of Patients with Multiple Sclerosis Transitioning Between Relapsing and Progressive Disease. CNS Drugs. 2023, 37:69-92. 10.1007/s40263-022-00977-3
42. Li H, Lian G, Wang G, Yin Q, Su Z: A review of possible therapies for multiple sclerosis. Mol Cell Biochem. 2021, 476:3261-3270. 10.1007/s11010-021-04119-z
43. Diouf I, Malpas CB, Sharmin S, et al.: Effectiveness of multiple disease-modifying therapies in relapsing-remitting multiple sclerosis: causal inference to emulate a multiarm randomised trial. J Neurol Neurosurg Psychiatry. 2023, 94:1004-1011. 10.1136/jnnp-2023-331499
44. Fischer HJ, Finck TLK, Pellkofer HL, Reichardt HM, Lühder F: Glucocorticoid Therapy of Multiple Sclerosis Patients Induces Anti-inflammatory Polarization and Increased Chemotaxis of Monocytes. Front Immunol. 2019, 10:1200. 10.3389/fimmu.2019.01200
45. Hoepner R, Chan AH-K: mTOR Inhibitor-Corticoid Combination Therapy For Multiple Sclerosis. 2018.
46. Al Malik YM, Al Thubaiti IA, AlAmmari MA, et al.: Saudi Consensus Recommendations on the Management of Multiple Sclerosis: Disease-Modifying Therapies and Management of Relapses. Clinical and Translational Neuroscience. 2022, 6:27.